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ular, we used the values 1500 m and 2000 m for the location 
of two reflectors; the values 1500, 2000, and 2600 m/see for 
the three velocity values and a frequency range of IO-40 Hz. 
For these values, the depth to the first reflector is 10 wave- 
lengths at the minimum frequency, while the separation 
between the layers is only 2.5 wavelengths. 

The exact data generated by this scheme agree with the 
data generated by the Kirchhoff approximation to four 
decimal places. Thus, implementation on these exact syn- 
thetics would also be exact to four figures, since the method 
is exact for Kirchhoff data. Thus. the solid lines in Figures I, 
2, and 3 represent the output of the second method as well as 
the input. 

Both methods were applied to field data provided to us by 
Lamont Observatory and used for demonstration purposes 
in Bleistein and Cohen (1982). Estimates of reflection 
strength on a major reflector at depth in that data set were 
consistent with estimates generated by other means. No on- 
site checks on the estimates are available. 
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Elastic Forward Modeling by the Fourier 
Method 
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Elastic forward modeling is important both for the evalua- 
tion of conentional seismic reflection surveys, and for shear 
wave surveys. In the former, elastic effects are ignored and 
for different structures one constantly needs to evaluate the 
validity of this assumption. In shear surveys acoustic as- 
sumptions are no longer valid and full elastic modeling needs 
to be employed. 

In elastic forward modeling, it is important to reproduce 
correct amplitudes of events since claims for the justification 
of ignoring elastic effects are often based on their small 
amplitudes. On the other hand the elastic wave equation is 
considerably more complicated than the acoustic wave equa- 
tion, and therefore elastic forward modeling is more chal- 
lenging. Thus with elastic modeling there is more justifica- 
tion for using direct methods such as finite differences which 
are expensive but are capable of producing correct ampli- 
tudes. 

In this work we present an elastic forward modeling 
algorithim based on the Fourier method. The main advan- 
tage of the method is the high accuracy of the spatial 
derivative approximation. This allows for the separation ofP 

waves from shear waves through application of divergence 
and curl numerical operators, and hence to follow the 
generation of converted waves. The numerical algorithim 
also allows for modeling with materials with high Poisson 
ratios and thus to approximate wave propagation in hetero- 
geneous structures which contain both solids and fluids in 
juxtaposition. 

In deriving the numerical algorithim, we depart from the 
approach of solving the vector wave equation for the dis- 
placements. Instead we derived a new set of equations for 
the stresses which does not include derivatives of the elastic 
constants. With this approach it becomes easier to affect the 
free surface boundary condition with the Fourier method 
and the algorithim appears more robust in modeling struc- 
tures with severe velocity changes. 

Basic equations 

In a two-dimensional continuous medium, the linearized 
equations of momentum conservation are given by: 

and (1) 

where x and y are Cartesian coordinates, rr,,, uYp, and crXY are 
the three stress components, U, and UY represent the 
displacements, f, andf, represent the body forces, p(x y) is 
the density. In (1) as in the remainder of this work, a dot 
above a variable represents a time derivative. 

Under infinitesimal deformation, the twice differentiated 
in time strain displacement relations are given by: 

(2) 

and 

where exxl eyy, and e,, represent the strain components. 
After the substitutibn of (1) into (2), an alternative state- 

ment of momentum conservation is obtained; 

and 
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Equation (3) contains the stresses and strains as unknowns 
whereas the displacements have been eliminated. In deriving 
this equation, no assumptions on material rheology were 
used and it also can be used for calculations for nonelastic 
media. 

The three additional equations required for determining 
stresses and strains in the medium are supplied by the stress 
strain relation. In the simplest case of an elastic and isotropic 
medium, these relations are given by: 

A and p represent the Lame constant and the shear modulus 
respectively. 

In a forward modeling problem, the geology of the mod- 
eled region is represented through the spatially variable 
material parameters X, p, and p. The seismic source is 
represented by the body forces fX and fY with appropriate 
time history. The solution gives the time histories of the 
stresses a,,, a?,,, gt,, at all points in space. From these 
stresses, values of other fields like the displacements can be 
generated. 

Fourier method solution 

In this study, equations (3) and (4) are solved by the 
Fourier method. The method includes a discretization of 
both space and time as with finite differences. The spatial 
derivatives in (3) are calculated with the aid of the fast 
Fourier transform (FFT) by using the property that a deriva- 
tive in the spatial domain becomes a multiplication by m 
times the wavenumber in the spatial frequency domain. The 
temporal derivatives in (3) on the other hand are calculated 
by second order differencing and the solution is stepped 
explicitly in time

Introduction of the seismic source 

The Fourier method allows flexibility in introducing seis- 
mic sources. Three types of sources can be used in the 
modeling, namely a directional force, a compressional force, 
and a shear source. 

For the directional force,f, (or&,) is applied in a localized 
region with a bandlimited time history. The frequency band 
is chosen in order that all waves generated in the numerical 
mesh will be greater than or equal to the spatial Nyquist 
wavelength (two grid points). In the calculations, ~?f,iax, 
a&./@, and af,/@ t d&Ids are calculated by the discrete 
Fourier derivative approximation described previously. 
With a number of sources applied vertically on the surface, 
the vertical force can approximate an array of vibrators. 

The compressional force is generated from a scalar poten- 
tial $(x,y) according to f, = d#~/iax and .& = &#Jiay. The 
potential is applied locally in space with a band limited time
history. The compressional source generates only P waves 
and thus imitates a symmetric explosion. 

The shear source is generated from a function ‘UX,Y) 
according to f, = dq/ay and ji, = - a~/&. This source 
generates only shear waves. Pure shear sources are difficult 
to realize in practice, but in numerical modeling are some- 
times useful in isolating and following shear wave propaga- 
tion. 

Strain compatibility 

In using the three stresses a,,, y,,,, and g,, as unknowns 
instead of the displacements CJ, and U?. it m&t be ensured 
that strain compatibility relations are not violated. It can be 
shown that in the continuous case, all the basic equations 
satisfy compatibility. For the Fourier approximation a dis- 
crete compatibility relation can be derived if all derivatives 
in equations (3) and (4) are calculated by the Fourier 
approximation. Violation of compatibility results in the 
presence of nonpropagating stresses. 

Numerical examples 

Results of applying the numerical algorithm to two impor- 
tant test problems are presented. The first example is of 
wave propagation in a homogeneous two-dimensional elastic 
half-space (Lamb’s problem). The second example is of 
wave propagation in medium containing elastic and fluid 
half-spaces in contact. Both problems pose a challenge for 
numerical modeling techniques. 

Two-Point Ray Tracing in 3-D 
Inhomogeneous Media 
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V. Pereyra, Univ. Central de Venezuela; and G. L. 
Wojcik, Weidlinger Associates 

We describe an interactive numerical analysis code for 3- 
D ray tracing in completely inhomogeneous media with 
discontinuous velocities across curved interfaces. This is 
based on a two-point formulation (in contrast to the conven- 
tional initial value formulation of “shooting” codes) using a 
Newton iteration on a trial ray connecting source and 
receiver. In particular, the 3-D ray equations are expressed 
as a first-order system of nonlinear ordinary differential 
equations (ODES) with algebraic boundary conditions, and 
solved using a variable order adaptive finite difference 
algorithm with global error estimates (PASVA4). Neighbor- 
ing paths in a ray spread are found by continuation of the 
initial converged ray. For models with constant velocity 
between any two interfaces, the corresponding ray leg is 
linear, and the solver finds only the interface crossing points 
with no integration required. Velocity gradients, depending 
on their complexity, require one or more integration points 
and grid spacing is chosen automatically to equipartition the 
local error. These details are fortunately transparent to the 
user who interacts via a menu and graphics with a friendly 
front-end program tailored to a particular class of 3-D 
models-by specifying source and receiver locations and the 
ray code of interest, i.e., regions and interfaces traversed 
and wave type on each leg (P or S), as well as any 
modifications to the model. 

There are a number of advantages to the two-point formu- 
lation in applications. First, the trial and error approach 
necessitated by shooting to connect source and receiver in 
complicated 3-D models is unnecessary; numerical iterations 
on the connecting ray are relegated to the two-point code’s 
Newton solver-not the user (or additional software). Sec- 
ond, shooting is naturally included in the two-point approach 
by specifying source location, take-off angles and either 
traveltime, ray length, or the final interface, e.g., the free 
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