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and Norman the inclusion of the new operator(s) in the set L
and the new g functions accounts for the interaction between
the original H,, #-, and H;, (and other 4, which may exist in
the original H operator).

The 15-degree migration operator can be written in a form
that contains three operators H,, H,. and H.. A reasonable
modification to one of the x-dependent terms of the equation
produces a set L with a finite number of elements. The
resulting set L contains an additional operator Hy. It turns
out that /| corresponds to the usual downward continuation
operator and H- corresponds to the usual time shift operator
familiar from the split-step approximation. Hs is present only
in a formulation which allows lateral velocity variations to
appear explicitly in the differential operator. H; has a
negligible effect on the solution in the neighborhood of the
finite difference operator. However, the interaction of H,
with H, and H, is responsible for the existence of the new
operator H, which generates a lateral shift of the field
proportional to both the depth step Az and to the velocity
gradient. The details of the solution are too involved to
present here but will shortly be submitted for publication.

An advantage of the operator formulation is that it is clear
that operators which commute do not interact. For example,
in the 15-degree migration operator the operator H,. corre-
sponding to the time shift correction for laterally varying
velocity. commutes with all of the other operators. In
particular it commutes with H, the downward continuation
operator. Thus, the time shift may be applied either before or
after the field is downward continued.
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Three Common-Shot Migration Methods S5.2
Moshe Reshef and Dan Kosloff, Tel Aviv Univ.. Israel

It has long been recognized that conventional CDP proc-
essing degrades in geologic areas with steeply dipping beds
and strong lateral velocity variation. As a result common-
shot processing has been suggested as an alternative in such
regions. A requisite for successful processing of this type is a
common-shot migration method which can be used with
arbitrary velocity variation. In this paper we describe three
common-shot migration methods which should perform well
in such complicated areas. The first migration algorithm is a
ray tracing method which maps digitized horizons from x-t
space 1-z space. The other two methods operate on com-
mon-shot gathers and map time sections into depth sections.
The common departure point for the three methods is an
imaging principle which replaces the exploding reflector
model used in the migration of stacked sections.

We describe the three migration methods and present
synthetic examples which shed light on their features.

Ray tracing migration

Common-shot ray tracing migration is very similar to ray
tracing migration of stacked time sections. Selected digitized
horizons are downward continued into the earth along rays.
The angle of emergence of the rays at each geophone is
determined from the slope of the traveltime curve under the
assumption that the interval velocities between the reflection

events on the time section are known. In this study we
assumed constant interval velocities between the layers in
the subsurface, although the method can be generalized to
account also for velocity gradients. The point of departure
from migration of stacked sections is that the length of the
extrapolated ray no longer corresponds to the total travel-
time from the reflector to the surtace, but rather the condi-
tion becomes that the sum of the traveitimes along the ray
from the shot to the reflector and along a second ray from the
reflector to the gecophone must equal the measured travel-
time of the event in the time section (Figure 1). The
determination of the point (F) for which the condition is met
ivolves a search procedure among different rays from the
shot location (e.g., SF,, SF- in Figure. 1).

Full acoustic migration

In tull acoustic common-shot migration. the acoustic wave
equation is downward continued in depth. Based on the
statement that a reflector exists whenever the direct wave
from the shot and the reflected wave are time coincident, the
final depth section is obtained by maintaining the wave
amplitudes at the time of arrival of the direct wave. Let P(x,
v = 0. 1) denote the recorded common-shot gather on the
Earth’s surface. The final migrated section then consists of
the field P[x, v. f(x, v)], where t,(x, v) denotes the time of
arrival of the direct wave from the shot to the point (v. ¥) in
the subsurface. In space frequency migration methods, P(x.
v, w) is calculated for each frequency based on the surface
values P(x. v = 0. w) and the final depth section is then given
by

Py, 2ot = 2 Ple, v, w) e'd, (N

where the summation is carried out over the seismic frequen-
cy band. Except for the different imaging condition (1),
common-shot depth migration is identical to the migration of
zero offset or stacked sections. The input for the migration
consists of the common-shot gather Plx. ¥y = 0. 1), the
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acoustic velocity C(v, z) and the “*imaging time" r(v. v}. The
output vields the depth section P(x, v. t,).

The success of common-shot migration depends upon an
efficient method for calculating r4x. v). In principle ¢, can be
calculated by ray tracing from the shotpoint to each point (x.
v)in the subsurface (or more precisely to the discrete set of
points x;v; of the numerical mesh). However. this ray tracing
¢an become time consuming and we chosc instead to calcu-
late 1, by a direct solution of the eikonal equation.

The eikonal equation

In a two-dimensional acoustic medium with variable
velocity Clx, v). the eikonal equation is given by
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where T denotes the traveltime to a given point in the sub-
surface. For the numerical integration, the equation is re-
written explicitly as
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The numerical solution proceeds as an integration in depth
after a specification of Tix, t = () on the surface. This
specification can be calculated directly in the case of uniform
surface velocity or otherwise by ray tracing. In the numeri-
cal integration the term a7/3x is calculated by second-order
differencing. During the integration. careful attention must
be given to the possibility of existence of discontinuous
wavefronts as in the case of postcritical incidence angles on
an interface.

Two-eikonal method

Through a solution of the eikonal equation, the traveltime
from a point on the surface to all points in the subsurface can
be obtained. The migration consists of constructing solutions
of the eikonal equation from the shot location and from each
geophone location. The amplitude of each sample of the
depth section is calculated by adding contributions from all
the geophone traces. For a given geophone trace and depth
point, the amplitude contribution is equal to the amplitude of
the trace at a time equal to the sum of the times from the
solutions of the eikonal equation for the shot location and for
the geophone location, respectively.

Although the two-eikonal method does not reproduce
amplitude values as accurately as the wave equation meth-
od, it is fast and easy to implement. Because the method
does not require spatial numerical differentiation. it can also
work with irregular geophone spacing. This point may have
added significance in implementing the method in three
dimensions.

The two-cikonal method is easiest to visualize in a con-
stant velocity medium. The contours of the solutions of the
eikonal equation then give families of semicircles centered at
the corresponding geophone or shot location. A time section
consisting of a single spike at time £, at one of the geophones
will map into an ellipse with focii at the shot and geophone
locations respectively. In general, an event on a time section
will map into a curve on the depth section which is common
to all ellipses traced for the event from euch shot geophone
pair. For a variable velocity medium the underlying princi-

ples are the same except that the ellipses will be replaced by
different curves.

Conclusion

We presented three methods for common-shot migration.
The methods are all designed for migration with vertical as
well as lateral velocity variation. Clearly, extensive testing
of the methods on different types of field data is required to
evaluate their effectiveness. In actual applications one can
foresee use of the fast ray tracing algorithm in a preliminary
stage for an iterative determination of interval velocities.
whereas the other two methods which operate on whole time
sections can be used for actual data processing.

Exact Kirchhoff Depth Migration of $§5.3
Unstacked Seismic Data
Philip L. Inderwiesen, Texaco Inc

A method for the two-dimensional depth migration of
unstacked seismic data is presented. The method assumes
that the subsurface velocity-depth structure is known and
consists of 2-D isovelocity layers separated by interfaces
which may be curved. The 2-D Rayleigh-Sommerfeld formu-
lation of the Kirchhoff integral for nonmonochromatic scalar
wave fields is used to migrate unstacked seismic data shotin
the dip direction. Since the velocity-depth structure can
have velocity variation laterally as well as with depth, ray
tracing is used to evaluate the Kirchhoff integral exactly.
The method requires that rays be traced from each depth
sample to the surface, thereby defining migration curves on
seismic field records. Amplitudes along the migration curves
are corrected for the focusing and defocusing effects of
geometrical divergence through ray tube theory. Also. a
weighted aperture, centered on the specular reflection ray at
the surface, is applied to the amplitudes along the migration
curves to minimize noise. The energy summed along each
migration curve is placed at its corresponding depth sample.
Thus, by carrying out this procedure for all depth samples. a
migrated depth section is determined. Since this method
would be prohibitively time-consuming if each depth sample
were treated individually, the FPS-100 array processor by
Floating Point Systems. Inc. is used to carry out ray-tracing
computations simultaneously for up to 1000 depth samples
on a given depth section trace. It is hoped such an implemen-
tation of the Kirchhoff migration method will make its
operation on unstacked data feasible.

Introduction

Common-datum-point (CDP) stacking of seismic reflec-
tion data acquired through CDP profiling is generally carried
out as part of the imaging process. However. when the
subsurface geology is complex the CDP stacked events {rom
steeply dipping reflectors are improperly imaged. resulting in
resolution loss and attenuated amplitudes or even total loss
of the reflection events. A possible solution to this problem
is to drop CDP stacking as part of the imaging process and
perform a full migration on the unstacked seismic data. Most
full migration techniques utilize the Kirchhoff method be
cause its implementation results in Fast algorithms. w v



