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behavior and yield large reflected amplitudes which contami- 
nate the seismic response. 

LYsmer and Kuhlenmeyer (1969) introduced a method 
which is based on visco-elastic boundary conditions; thereby 
compressional waves will be attenuated whereas shear 
waves are not affected comparably. Smith (1974) presented a 
method which subjects the displacement field at the bound- 
aries to Dirichlet and Neumann conditions, respectively. In 
this way a superposition of the corresponding numerical 
solutions totally cancels the reflected wave field. Since this 
method requires 2” (n = number of boundaries) repetitions 
of the computation large CPU-times result. In 1977, Eng- 
quist and Majda and Clayton and Engquist published a 
family of absdrbing boundary conditions which represent 
first and second order one-way approximations of the equa- 
tions of motion for acoustic and elastic waves. Similar ideas 
were followed by Reynolds (1978) who introduced one-way 
approximations by factorization of the equations of motion 
in terms of the incident and reflected part of the wave field. 

We tested both methods for elastic waves and found that 
they work excellent for angles of incidence 4 < 50” whereas 
for larger angles residual reflections become significant. To 
reduce the amplitudes of these residual reflections, we 
suggest proceeding in the following way: (1) Implementation 
of Clayton and Engquist’s second order absorbing boundary 
conditions into the FD-algorithm. (2) Introduction of a visco- 
elastic bordering strip which additionally reduces boundary 
reflection by dissipation. 

To introduce dissipation into the FD algorithm, we make 
useQf a complex angular frequency Li = o - in which leads 
to an attenuation of the displacement field by a factor e-“. 
Since this is equivalent to complex seismic velocities CX, p for 
P- and S-waves, respectively, an additional interface has to 
be considered generating reflected P- and SV-waves. For r/w 
= .05 the reflection and transmission coefficients for incident 
plane harmonic P- and SV-waves, respectively, are shown in 
Figures 1 and 2. 

Incident P-wave (Figure 1). The coefficients I@I, @$I, and 
&$I do not become significant for practical calculations, i.e., 
the incident P-wave passes the interface without a relevant 
loss of energy and propagates mainly as a P-wave in the 
visco-elastic medium. 

Incident SV-wave (Figure 2). In this case the reflected P- 
wave can be expected to contaminate the seismic response 
for angles 4 > 40”. If, however, SV-waves are assumed to be 
generated only from first order discontinuities, the influence 
of the reflected P-wave on the seismic response should not 
become too large. The coefficients 1% and If&l are seen to 
be less than 1 p.c. of the incident amplitude and do not affect 
the numerical calculations. Finally, in the visco-elastic zone 
the converted P-wave becomes dominant. 

In the following numerical calculation we tested the meth- 
od. We model the propagation of a compressional P-wave in 
a structure with a horizontal first order discontinuity (Figure 
3, horizontal heavy line) separating two homogeneous elastic 
media. In the upper medium we chose a = 2.0 kmis and in 
the lower half-space a = 4.0 km/s. In both media we put the 
density p = 1 and the shear wave velocity p = (yifi At the 
boundaries of the model we used second order paraxial 
approximations of Clayton and Engquist and inserted a 
visco-elastic strip at the left and right side of the model 
(Figure 3, vertical heavy lines). The strip has a width of 18 

spatial increments. Figure 3a shows the horizontal (H) and 
vertical(V) component of the direct P-wave. In Figure 3b the 
components of the reflected wave field (PP, PSV) can be 
seen. In this case after applying the Clayton and Engquist 
algorithm residual reflections can be observed which are not 
further damped by the visco-elastic strip. Figure 3c finally 
shows the result of additional damping which effectively 
reduces the residual boundary reflections. 
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One of the nagging problems which appears in the applica- 
tion of discrete solution methods to wave propagation prob- 
lems is the presence of reflections or wraparound from the 
boundaries of the numerical mesh. In this paper we describe 
a scheme for the elimination of these unwanted events which 
can be applied to a wide class of wave equations and 
numerical methods. The scheme is first presented as an 
empirical approach based on a gradual elimination of wave 
amplitudes along the bondaries of the numerical grid. How- 
ever, in order to apply the method to implicit and semi- 
implicit schemes which do not use explicit time stepping, the 
absorbing boundary condition is rederived and cast in the 
form of a modified wave equation. This derivation gives the 
additional benefit of the ability to evaluate the effectiveness 
of the absorbing boundary a priori, and adjust its parameters 
without having to make costly computer runs. 

The absorbing boundary condition is demonstrated with 
examples from acoustic and elastic wave propagation with 
the Fourier solution method. 
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FIG. 2. 

The empirical approach 

For illustration we demonstrate the nonreflecting bound- 
ary condition for the Fourier method solution of the acoustic 
wave equation (Kosloff and Baysal, 1982). 

Let p”(i j) denote the pressure at time t = nDt and at 
spatial location X = iflx, y = joy, i = I . . . , Nx, j = 1 . . . , 
NY, with dt denoting the time step size and Dx and Dy 
denoting the mesh size in the x and y directions. A typical 
time step of the solution method runs as follows, (Kosloff 
and Baysal, 1982). (a) Calculate 

2 II 2 I, 

R”(ij) = 5 + 5 

by the Fourier approximation. (b) Integrate in time accord- 
ing to 

P "'+"'(ij) = p"-"2(ij) + Dr. R"(ij). C*(ij), 

and 

pflt’(i j) = p”(i j) + Dt i)r’t”2(i j), 

with C(ij) denoting the acoustic velocity. The calculations in 
(a) and (b) are repeated for the desired number of time steps. 

For the nonreflecting boundary condition the values of 

P 
?I+’ and p/1+1/2 are slightly reduced after each time step in a 

strip of nodes surrounding the numerical mesh. For the 
Fourier method we found a strip width of 20 nodes sufficient 

to reduce side reflections to a few percent. The amplitude 
reduction in each strip is gradually tapered from a zero value 
in the interior boundary of the strip. 

Modified acoustic wave equation 

For derivation of the modified acoustic wave equation, it 
is convenient to consider the wave equation as a set of 
coupled first-order equations given by: 

where V is equal to the pressure time derivative. The 
amplitude reduction step of the previous section can then be 
considered as a first-order time stepping scheme for the 
equation: 

where IY is the reduction factor which attains its largest value 
at the grid boundaries. The numerical scheme can now be 
viewed as a splitting method of a single system of equation 
given by: 

This system can be integrated numerically as in- the 
example of the next section. Most integration schemes for 
the acoustic wave equation, however, are based on a single 
second-order wave equation. An equation of this type is 
achieved after the elimination of V from the previous equa- 
tion. This gives, 

a2 a2p a2p ap 
-=c2 ---$T -2a--c?p. 
at2 ( ) ay at 

This equation, like the exact acoustic wave equation, can be 
integrated in time after a choice of a stable integration 
scheme. In addition, this equation can be solved analytically 
for one space dimension by the propagator matrix method 
and the effectiveness of the absorbing regions for different 
values of the parameter (Y can be assessed. 

Example: Acoustic wave propagation 

We consider acoustic wave propagation in a region con- 
taining a low velocity region (Figure 1). A point source was 
excited in the high velocity region slightly below the layer. 
The amplitudes of successive times were calculated with the 
Fourier method (Kosloff and Baysal, 1982) with a time
integration scheme based on the semi implicit method of Tal 
Ezer (1984). 

Figure 2a-c presents wave amplitudes at progressive times 
with inclusion of absorbing boundaries. As the figures show, 
wraparound or boundary reflections have been virtually 
eliminated. For comparison Figure 3 shows a corresponding 
snapshot which was obtained without the absorbing bound- 
ary condition. 

FIG. 3. 
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