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input data where the signal is usually taken to be reflection infor- 
mation and the remainder of the seismic wave field is generally 
classified as noise. While high-amplitude, randomly distributed 
(white) noise can make extraction of the reflection wave field 
difficult, the most harmful type of noise is the coherent part of 
the wave field known as ground roll. Removal of ground roll 
from seismic data has historically been a fundamental step but 
the completeness of its suppression without removing reflection 
information is partially linked to the acquisition method used in 
the field. Large receiver arrays reduce only part of the ground 
roll while attenuating certain parts of the reflection wave field. 
Long group intervals tend to alias the surface wave field making 
removal of residual coherent noise by methods such as velocity 
filtering difficult. 

However, the effect of recording ground roll with truer fidelity 
using short arrays and small group intervals provides more effi- 
cient noise suppression than previously possible with conven- 
tional data. This effect is particularly noticeable in the deconvo- 
lution step where the higher S/N of the input data results in 
reduced phase distortion due to increased accuracy of the opera- 
tor coefficients. This is because correlation is used to measure 
wavelet similarity in computing filter operators. Although ground 
roll has spectral components within the seismic band of interest, 
its wavelet shape is different from the reflection signal and inter- 
feres with the correlation process. Thus, the output signal from 
deconvolution performed on the high-density data after noise 
suppression has better vertical resolution because of a larger SIN 
and less phase distortion than the deconvolved conventional data. 
The increased performance of deconvolution also results in im- 
proved velocity and residual statics analysis particularly notice- 
able after array-forming the high-density data. 
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We present an elastic forward modeling algorithm based on the 
Fourier method. This modeling is capable of handling arbitrary 
velocity variation in both the horizontal and vertical direction. 
Although from a mathematical viewpoint 3-D modeling is not 
very different from 2-D modeling, from a computational view- 
point, however, 3-D modeling is an order of magnitude more 
difficult. For example, modeling of a region of size 5 km in all 
spatial dimensions with a frequency band reaching 40 Hz, re- 
quires a grid size of at least 250 x 250 X 250. The total amount 
of computer storage required for such a problem is over 200 mil- 
lion words. Obviously problems of this magnitude pose a serious 
challenge to current computer technology. 

The elastic modeling algorithm is first tested against simple 
problems for which the results can be readily understood. In a 
later stage more complicated problems will be introduced. The 
input for a typical problem includes the density and the P and S 
velocities at all grid points as well as a specification of the seis- 
mic source. The output can include a variety of displays such as 

displacement or stress time sections at selected receivers, or 
snapshots of these variables at fixed times. 

Basic equations 

Forward modeling is based on the integration in time of the 
equations of conservation of momentum, and the relations for an 
elastic medium undergoing infinitesimal deformation. Let Xi, 
j= 1,2,3 denote a Cartesian coordinate system in which X, points 
in the vertical direction. The equations of momentum conserva- 
tion then read: 

3 au c -1! +“( = pii, 
j=1 ax, (1) 

i= 1,2,3 

uji denotes stress components, fi denotes body forces, p denotes 
density, and U, denotes the displacement components. The con- 
vention where a dot above a variable denotes time differentiation 
was adopted. In order to make the system (1) determine addi- 
tional equations, relating the stresses to the displacements is re- 
quired. For an isotopic infinitesimal elastic region these relations 
read: 

a, = A0 6, + p. 
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with 

X and p, denote the Lame’s constants. 
The forward modeling consists of the solution of (1) and (2) 

in time time integration is carried out by time stepping by sec- 
ond-order differencing as in the 2-D case (Kosloff et al., 1984). 
Spatial derivatives at each time step are evaluated with use of the 
FFI’ (Kosloff and Baysal, 1982; Kosloff et al., 1984). Equations 
(1) and (2) contain a total of 18 derivative terms of this type. 
Thus for a cubic grid, each time step will involve the calculation 
of 18 X 2 X (number of points on an XiXJ plane) FFTs. The input 
for the modeling includes the elastic constants A and k (or, alter- 
natively, the seismic velocities) and the densities at all grid 
points. In addition the seismic source is introduced through a 
specification of the body forces A.. These can include directional 
forces in whichfi points in a specified direction, or an isotropic 
pressure source as well as a variety of shear sources. Although 
not all these sources resemble exploration geophysics type 
sources, they can sometimes be useful in examining important 
effects like the generation of converted p-waves from an initial 
SH-wave. 

As for the boundary conditions on the horizontal boundaries as 
well as the bottom boundary, we applied the absorbing boundary 
described in Cerjan et al. (1985). For the top boundary there is a 
possibility of introducing a free surface or allowing events to 
wrap around to the bottom of the grid and be eliminated by the 
absorbing region there. The free surface condition is effectively 
achieved through the introduction of a wide zone with zero seis- 
mic velocities above the upper surface of the model (or equiva- 
lently because of periodicity below the bottom of the model). 

Numerical implementation 

The 3-D elastic modeling algorithm was implemented on the 
Cray XMW computer. The Fourier method is highly vectoriza- 
ble, and can also be designed to utilize simultaneously the four 
CPUs of the Cray computer. The calculations require a number 
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FIG. 1. Storage arrangement. 

of global variables of size equal to the number of points in the 
numerical mesh. These include three displacements Vi, three ve- 
locities ir,, material parameters p, A, p as well as 6 auxiliary 
variables which at certain stages contain either the 6 stresses a4 
or the 3 accelerations of Vi. A typical 3-D problem of size 
243 x 243 x 125 will thus require over 110 million words of stor- 
age. This fits within the size of the 128 million words of the SSD 
memory of the Cray XMW, but does not fit within the physical 
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FIG. 2. 
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memory of 8 million words of the computer. A strategy of leafing 
through the storage at each time step is therefore required. The 
main goal is to minimize the amount of I/O and I/O requests 
between the host memory and the SSD. 

The storage scheme which we finally adopted is based on a 
pencil structure (Figures 1 and 2). Denoting X,, XT, X3 in equa- 
tions (1) and (2) by x,y,z respectively, a time step of the algo- 
rithm consists of calculating new values alternatively in planes 
perpendicular to the Z-axis (xy planes) and planes perpendicular 
to the y-axis (xz planes). In each case a number of planes are first 
loaded into main memory by reading in a strip of pencils. The 
size of the strip must fit in main memory. Multitasking is 
achieved by allowing each of the four CPUs of the Cray XMP4 
to operate on separate planes until values in all the planes in a 
strip of pencils have been updated. The pencil structure involves 
a special numbering of storage location (Figure 2), but the algo- 
rithm can be organized in a manner which keeps natural number- 
ing in main data memory. 

Numerical results and timings 

The numerical algorithm will first be tested against problems 
with known analytic solutions and simple problems which give 
results which can easily be interpreted. Timings of typical runs 
will also be presented. 
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The paper deals with the numerical modeling procedure of 
seismic wave propagation in heterogeneous media. For this pur- 
pose, the method suggested is based on a combination of finite 
integral transforms with respect to one of the spatial coordinates 
and finite difference technique with respect to the other. With the 
help of this approach one calculates complete synthetic seismo- 
grams in vertically inhomogeneous models of media (isotropic, 
anisotmpic, liquid-filled porous, and linear nonelastic media). 
The approach described above was developed for complex 2-D 
and 3-D arbitrary subsurface geometries. Examples are given of 
calculating complete synthetic seismograms for different models 
of the media. 

Numerical seismic modeling has recently become an invalu- 
able tool for the study of the Earth’s structure, and now it is an 
important part of seismic interpretation. Numerical modeling 
made it possible to calculate complete seismograms for complex 
subsurface geometries and ampare them to observed records. In 
order to reach good agreement between synthetic and observed 
records, it is first necessary to select properly a physical model 
approximating a real medium. With the accumulation of experi- 
mental data our views on a physical modelchange. 

In seismic prospecting one deals with 1-D and 2-D inhomo- 
geneous models of anisotropic, attenuating, porous and some 
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