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Parallel 15 ” finit,e difference migration with only two processing elements 

1 .4u 1 ‘-1 li t .40 

1 Ho 24, 1 B” A, 1 BrJ .4, 

c’, B, A, CO B, A, C, B, As 

Do c’, B2 Do C, B, A3 00 C, B2 A3 

Eo DI C2 EO D, C2 B3 A, Eo D, C2 B3 A, 

J-o E, D2 Fo E, D2 C3 8, Fo E, 02 (73 Bd A5 

T+ T--+ T- 

FIG. 5. Parallel 15” finite-difference migration when only a 
limited number of processing elements available. Here only 
two units used and migrated section generated in tiers. 

nearly independent of step size. Therefore, we do not need to 

choose large extrapolation step sizes purely to save computational 
time and can freely employ the rather small extrapolation steps 
that are usually needed to realize the improved accuracy that 
high-dip algorithms offer. 

A few small processors. Economic constraint usually limits 
the number of identical differencing stars one may cram into the 
parallel migration device. For example, on the SAXPY I-M 
computer discussed by Levi, and Parks (198.5) there are 32 pro- 
cessing elements. In this event auxiliary storage will be needed 
to replace the lacking parallel components and to hold temporary 
results. A reasonable way to minimize (expensive) accesses to 
auxiliary storage is to mimic conventional IS-degree migration 
and do parallel sweeps as diagrammed in Figure 5. Alternatively, 

one may sweep horizontally Instead of vertically (t-outer) or sim- 
ply flip-flop processing elements along each subdiagonal, follow- 

ing the basic reverse time algorithm as much as possible. 
Large processors (overlap). While it is not essential to pro- 

vide each parallel unit with enough internal memory to hold the 
input and output vectors (and any temporary intermediate vectors 
that might arise), it can be desirable to do so. When the vectors 

are significantly shorter than the maximum length for which in- 
ternal memory is designed, it is feasible to process multiple vec- 
tors inside the differencing unit. For example, one might identify 
each unit with a conventional pipelined array processor where it 
is advantageous to process multiple vectors to minimize I/O to 

the host computer or other processors. Here the processing ele- 
ment, as illustrated in Figure 6, can till in a rectangular array 
computed from the sides or bottom before requiring new input. 
This allows us to sweep toward the diagonal in rectangular 
chunks. just as if they were simple differencing stars, only larger. 
Of course, edge effects have to be accounted for. 

Further parallelism 

We have now seen how migration decouples into independent 
constant 7 vector calculations in constant I (i.e.. f’ - 7) compu- 
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FIG. 6. Multiple input differencing star generated by re- 
peated application of basic differencing star. This over- 
lapped form useful for minimizing l/O when employing con- 
ventional large memory pipelined processors for parallel 
x - t migration. 

tational planes. Explicit algorithms, such as that of equation (6), 
increase parallelism even further by decoupling the individual x 
components of each vector. This further decreases the time
needed for complete migration by a factor proportional to the 
number of traces, say another three orders of magnitude. In 
rough figures, if a migration of 1 Ooo by 1 000 point section 
normally takes half an hour on a conventional mainframe, then 
the reverse-time parallel organization potentially reduces this by 
about a factor of l/2 X 1 000 = 500 or to just under three 
seconds and an explicit migration gains an additional factor of 
1 000, taking the time down to 3 ms. Even attaining only one 
percent of this theoretical gain brings migration into the fold of 
inteructive tools available to the practicing geophysicist. 

Conclusions 

I have shown how to introduce a high degree of parallelism 
into conventional time-domain migration algorithms. This paral- 
lelism is even further enhanced for the class explicit migration 
algorithms and offers the attractive prospect of interactive migra- 
tion to the geophysicist. 
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Three-Dimensional Depth 
Migration by a Generalized Phase-Shift 
Method 
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Reshef, Cray Research 

We present a three-dimensional post stack migration algorithm 
which is based on an extrapolation in depth with the acoustic 
wave equation. The new method is designed to handle vertical as 
well as lateral velocity contrasts. The migration is carried out in 
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the space-frequency domain. The wave equation is solved by a 
new expansion technique which virtually assures the same type 
of accuracy which is obtained with the phase-shift method for 
laterally uniform structures. The new method was implemented 
on the Cray XMP48 computer. The structure of the algorithm 
allows for easy utilization of vectorization and multitasking. 
Multitasking is achieved by allowing each task to perform cal- 
culations for different frequencies Vectorization is achieved by 
performing identical calculations along parallel lines within each 
frequency plane. 
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where Co = 1, C, = 2 for !+O, R is the range spanned by the 
eigenvalues of Adz, and Jk are Bessel functions (Tal Ezer, 1984; 
Kosloff and Kessler, 1986). Qk are matrix polynomials which are 
generated recursively by: 

Qc+,U = Qk-I U + 2 y QJJ, 
i i 

(7) 

with Q0 = U and Q, = 
Adz ( 1 7 U, (Kosloff and Kessler, 1986). 

For poststack migration, the velocity should be taken to equal 
half the actual velocity in the medium (Kosloff and Baysal, 
1983). The solution of (6) is carried out for each frequency at all 
depths. The final section is calculated according to (4). 

Basic equations 

The depth migration is based on a variant of the temporally 
transformed acoustic wave equation given by 
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x, y, and z denote Cartesian coordinates, &y,z) is the acoustic 
velocity, w is the temporal frequency and P(x,y,z,o) is the trans- 
form of the pressure field. Equation (1) departs from the classical 
wave equation in the vertical derivative term. This gives impe- 
dance matching for horizontal interfaces (Baysal et al., 1984). 
The generation of spurious downgoing energy at sharp interfaces 
is therefore reduced. 

As in the 2-D case, it is convenient to recast (1) as a coupled 
first-order system given by 

L$) +c($$$)~o](~j. (2) 

After a spatial discretization in the horizontal coordinates and a 
specification of an approximation for the horizontal derivative 
operator, equation (2) transforms into an ordinary differential 
equation system given by 

i(u) = A(U) 
With N, and NY, respectively, denoting the number of seismic 
traces in the x and y-direction, U becomes a size of 2N,NY vector 
containing first the pressures and then the pressure derivatives. 
The size 2N,N, by 2N1NY matrix A is obtained from the operator 
on the rhs of (2). 

The solution of (3) proceeds in depth increments. The incre- 
ments should be chosen small enough to assume that the material 
properties do not vary in the vertical direction within them. As 
in the 2-D case the solution of (2) requires the generation of 
values of c(a!%%) on the surface before the depth extrapolation 
(Kosloff and Baysal, 1983). The final migration section is cu- 
mulated according to 

P,&Y,Z) = C&X,Y,Z,~), (4) 
w 

(Kosloff and Baysal, 1983). 

The generalized phase-shift method 

The generalized phase-shift method departs from the formal 
solution of (3) given by 

(U),+, = e*“(U),. (5) 

Equation (5) is evaluated by the expansion 

Implementation of the algorithm on the Cray XMP48 
computer 

The generalized phase-shift method allows for easy utilization 
of multitasking and vectorization. The fact that the downward 
continuation is carried out for each frequency separately enables 
each component of the four CPUs of the Cray XMP48 computer 
to operate on a different frequency. Within a single CPU most of 
the computational effort involves calculation of horizontal deriv- 
atives by FFTs which is a highly vectorizable operation. 

Results of applying the new migration algorithm indicate that 
it is highly accurate and efficient compared to schemes based on 
numerical integration techniques for ordinary differential equa- 
tions, such as the Runga-Kutta and Predictor-Corrector methods. 
In fact for laterally uniform structures the new algorithm gives 
the same results as the ordinary phase shift method (Gazdag, 
1978) to within the precision of the computer. 
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Seismic 8- 
S/N Improvement 
and Land Acquisition 

S8.1 Low Seismic Frequencies: 
Acquisition and Utilization of Broad- 
Band Signals Containing 2-8 Hz 
Reflection Energy 
David W. Bell, Conoco Inc. 

Seismic resolution is improved by increasing signal bandwidth 
toward both higher and lower frequencies. The low frequencies 
are particularly important in inversion of the seismic trace; their 
deliberate acquisition can significantly improve the accuracy of 
surface-derived velocity sections. This is demonstrated with real 


