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This work represents a new acheme for time
integration of direct solution methods such 

The numerical algorithm is based on the 

as finite-difference, finite-element, 
solution of the 

and 
equations of momentum 

conservation for a three-dimeneional 
Fourier methods . Forward modeling with 
elastic 

continuous medium combined with the etrain- 
wave propagation is inVaatig&ted. 

The rapid expansion method (REM), which we 
displacement and rtrerr-strain relationa for 

have developed, is based on a modified 
a Linear isotropic elastic solid (Fung, 

Chebychev expansion of the formal .eolution 
1965). 

to the governing equations. The REM Written in compact tensor 
implementation of the equations of dynamic 

notation, the 

elasticity using the Fourier method is 
equations of monentum conservation are the 

simiLar to previous development featuring 
following, 

conventional time integration of second 
order differencing. A high degree of & 

parallelism exists between the calculatione 
Pai . a7 ‘Id + Pf‘ i - 1,2,3, (1) 

in one time step with temporal differencing 
and REM calculations. Spatial partial 
derivatives are computed in the same manner. 

where xj are Cartesian coordinates, olj(z, t) 

Compared to time integration of second order 
are the etreesee, p(z) denotes the density, 

denote 
diffarencing, Larger time steps or 

ulG, t) displacements, and f,(G, t) 

increments are permissible with the REM 
are the body forces. In (1) and elsewhere, 

implementation. For output time sections, 
repeated indices imply summation and time
differentiation is denoted by the dot 

results at intermediate times are obtained convention. 
by resubstituting intermediate times in the 
computational equations. This does not The stress-strain relations are given by, 
require recomputation of spatial partial 
derivatives. The REM can be used to 
increase accuracy or to obtain comparable Q1J - A+,, + 2rei, 1,) - 1,2,3# (2) 

accuracy with fewer computations. 
Conventional time integration and REM 
methods have been implemented on the CRAY 
X-MP computer sye tam using parallel 

where X(G) and r(x) are the rigi_dity and 
shear 

the large memory of the 
modulus, 

processing and 
respectively, eij(x,t) are 

Solid-state Storage Device (SSD). The REN 
the e trains, and 6,, is the unit tensor or 
Kronecker delta. 

can be applied to acoustic and elastic wave 

ProPa8ation using formulations other than FinaLLy, the strain-displacement relations 
the Fourier method. are given by, 

INTRODUCTION e,, - + * uI + +, u, 
I 1 

t.j - 1,2.3. (3) 

For acoustic and elastic wave propagation, 
direct solution methods typically feature FORMAL SOLUTIONS 
distinct temporal and spatial 
differentiation approximatione. Spatial 
approximations are accomplished by a number 

After spatial diecretization, direct methods 
yield a coupled system of differential 

of approaches with varying degrees of 
accuracy. Temporal derivatives 

equations for the displacements at the nodee 
are of the numerical mesh. This system can be 

typically approximated by some form of written in compact form as, 
differencing based on Taylor expansions. 
For algorithms with highly accurate spatial 
approximations, the above has caused an a’ - -LG + 3, (6) 
imbalance between temporal and spatial x”- 

accuracy. 

where s is a vector containing ?t:: 
displacement in x, y, and z directions, 
a vector of body forces, and -L2 is a Linear 
operator. L 
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2 New rapid extension method (REM) 

Assuming that _body forces are separable 
according to f(x,t)-g(x)h(t) where all time
dependence is contained in h(t), the formal 
solution to (4) under zero initial 
conditions is given by, 

U(t) - 
[ 

t sinLr h(c-r)dr 
I 7 

3 
9. (5) 

0 

Conversely, when the body forces are zero 
and with initial conditions z(o) and a(o) 
for the displacements and first time
derivatives, respectively, the solution to 
(4) becomes the following, 

G(t) 
sinLt f 

- cosLt G(o) + 7 u(o). (6) 

REM FOR THE NON-ZERO BODY FORCES 

Following the work of Tal-Ezer (1986), the 
REM is based on the following Chebychev 
expansion, 

where R is a scalar larger than the range of 
eigenvalues of L, J, denotes the kth order 
Bessel function, and Qk are modif ied 
Chebychev polynomials, satisfying the 
following recursion relation, 

where I is the identity operator. Using 

(7), the solution (5) can be written as 
follows, 

(9) 

1t 
br-H 0 J J, (rR)h(t-r)dr. (10) 

For a band limited time history h(t), b, 
terms decay exponentially and summation (9) 
is truncated after approximately R/2 terms. 

b, terms are evaluated by numerical 
integration. 

REM FOR ZERO BODY FORCES 

To eliminate displacement time derivatives, 
we add soluttans to (6) for times t and -t 
obtaining the following, 

G(t) - -;(-t) + 2 cosLt G(o). (11 

The REM is obtained with the following 
expansion, 

iL 
cosLt - i c,J,(tR) Qi 'ii- 8 

I 1 (12) 
t-0 t .".D 

where c,-1 and ~~-2 for k+O (Tal-Ezer, 
1986). Qk satisfy the following recursion 
relation, 

Q. 

QZ 

iL 
F -I, 1 
iL 

T- I 
-I -g* 

Summation (12) 
_approximately_R/Z 
u(-t) and u(o) I 
propagated to time 

21 Qr 1 

is 
terms 

the 

t by 

truncated after 
Given values of 

solution can be 
11-13). 

REM IMPLEMENTATION TO THREE-DIMENSIONAL, 
BLASTICITY 

The three-dimensional elastic implementation 
with the Fourier method requires twelve 
global arrays which reside on SSD storage. 
These are material parameters p, X, a, three 
displacement components, three Q*_s terms, 
and three Qlr terms. Three additional SSD 
arrays are required for temporary storage. 
This is the same number of arrays required 
for implementation with temporal 
differencing (Edwards et al., 1985, and 
Reshef et al., 1987). Data motion and 
calculation of spatial derivatives are also 
identical to the previous implementation. 

For a specified model, calculations first 
proceed from zero initial conditions with 
the non-zero body force formulation. After 
source termination, the solution is 
propagated by the zero body force 
formulation. It is efficient to use fairly 
Large time increments (for example, 100-200 
msec). As implemented, central memory 
storage of expansion terms, which increases 
with time increment size, is the limiting 
factor. For output time sections, results 
at intermediate times are obtained from (Y- 
10) or (11-12) by substituting the 
intermediate time instead of t. This does 
not involve additional calculation of 
spatial derivatives. 
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Now rapid extension method (REM) 3 

ACCURACY AND NUMERICAL EFFICIENCY 

Expansions (7) and (12) can be calculated 
with machine accuracy at no significant 
added cost. For practical purposes, no 
errors are introduced by the REM in the time 
integration. This is unlike temporal 
differencing where numerical dispersion is 
always present (Kosloff and Baysal, 1982). 
The main source of error is due to the 
representation of a continuous medium by a 
discrete spatial mesh. This factor will 
always limit the highest frequency which can 
be correctly propagated. 

We will now consider the efficiency of REM 
and temporal differencing with the Fourier 
method. For comparison, we examine the 
number of -Lz operator evaluations required 
to propagate the solution 100 grid lengths 
for a medium with uniforn P-wave velocity 

",. For the REM method, the number of 
expansfon terms (or, equivalently, the 
number of -Lz operator evaluations) is 
approximately 20% greater than iRAt where At 
is the total propagation time. For three- 
dimensional propagation, R is approximately 
equal to (/J * V,)/As and the propagation 
time is (lOOAs)/V, where As is the grid 
spacing. Approximately 326 expansion terms 
are required. For second order temporal 
differencing, the parameter a-(VPAt)/As must 
be kept smaller than 0.2. For propagation 
of 100 grid lengths, at least 500 -La 
operator evaluations or time steps are 
required. As most of the computational 
effort is in the evaluation of the -L2 
operator, the ratio between the total 
computation times with the two methods is 
proportional to the respective number of 
required operator evaluations. Numerical 
examples for three-dimensional elastic wave 
propagation are presented. 
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