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SUMMARY 

This work presents a new scheme for wave propagation simulation in 

three-dimensional elastic-anisotropic media. The modeling is based 

on the rapid expansion method (REM) as time integration algorithm, 

and the Fourier pseudospectral method for computation of the spatial 

derivatives. The modeling allows arbitrary elasticities and density in 

lateral and vertical directions. 

Numerical methods which are based on finite-difference techniques 

(in time and space) are not efficient when applied to realistic 3-D 

models, since they rquire considerable computer memory and time

to obtain accurate results. On the other hand, the Fourier method 

permits a significant reduction of the working space, and the REM 

algorithm gives machine accuracy with the same computational effort 

as the usual second-order temporal differencing scheme. 

The modeling scheme was implemented on a CONVEX vector com- 

puter. Due to memory limitations the example presented in this work 

is restricted to the problem of wave propagation in a homogeneous 

transversely-isotropic medium, although the computer code is avai- 

lable for the computation of snapshots and synthetic seismograms in 

heterogeneous models, and for the use in parallel computers like for 

instance the CRAY X-MP system. 

In a three-dimensional continuous medium the linearized equations 

of momentum conservation are 

plij = 2 + pfi, i = 1,2,3 
I 

where Zj are Cartesian coordinates, Uij(r;t) are the stress compe 

nents, u;(Z, t) are the displacements, p(Z) denotes the density, and 

f,(Z, 1) are the body forces. Repeated indices imply summation and 

a dot above a variable indicates time differentiation. 

The constitutive relation is given by 

f=C_@ (2) 

where 

p = [‘?I, 022, r33r 023, u13,“12]r 

is the stress vector, 

(3) 

gT = [En, e22, P3a 2623. ‘&3,2Qz]r (4) 

is the strain vector, with eij(z’,t) the strain components given by 

INTRODUCTION 

The growing importance of 3-D seismic surveys requires the deve 

lopment of an elastic-anisotropic forward modeling code for an ap- 

propiate interpretation of the results. For instance, of importance to 

global seismology *is the study of the Earth’s crust and upper mantle, 

which are known to be anisotropic; 3-D polarization analysis in aniso- 

tropic media can be used as structure indicator: shear wave splitting 

gives information about the alignement of cracks, an important pa- 

rameter in reservoir engineering (Crampin, 1985). 

The proposed approach is based on spectral methods, both in space 

and time and therefore wave field computations are highly accurate. 

Besides this fact, vectorization (mainly the FFT routine) and paral- 

lelization of the algorithm provides a very efficient scheme in terms 

of computer time

The program has been written to compute snapshots and synthetic 

seismograms in a general anisotropic medium, which can be described 

by 21 independent parameters. The modeling code provides different 

types of seismic sources: directional forces, and purely compressional 

and shear initial motions, with causal zero phase Ricker, Gaussian 

and vibrator wavelets. In addition. with the possibility of simulating a 

free surface, these features enable the modeling of a variety of seismic 

surveys. 

rij=~(~+~), ;,j=l,2,3 (5) 

The superscript ‘T’ denotss transposed. The elasticity matrix C(Z) 

is symmetric with CIJ, I, J = 1,. . . ,6 arbitrarily spacedependent. 

The REM algorithm requires that the equation of motion be written 

as 
2= -&+f: (6) 

where ti is the displacement vector, jis the vector of the body forces, 

and -L2 is a linear operator which contains the spatial derivatives 

and the material parameters. This matrix operator is expressed by 

-Lz = ‘GiJcJKG .T ‘I KI 1 i, j 1. 2,3 J.K = = 1....,6 
P 

m 

with B 

;r;; 6 

0 a 8;; 0 a 0 ' K zy' (8) 0 0 00&S& 1 a B a 0 zy% q 
After spatial discretization, equation (6) becomes a coupled system 

of differential equations for the displacements at the nodes of the 

numerical mesh. Like the Chebychev spectral method (Carcione et 

al.. 1988), the REM algorithm is based on a modified expansion of the 

formal solution ofquation (6), in terms of Chebychev polynomials. A 

detailed description of the REM algorithm with comparison to second 

order temporal differencing can be found in Edwards et al., (1987) 

and Kosloff et al., (1989). 
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NUMERICAL SIMULATION 

Practical applications of 3-D forward modeling rquirc important 
quantities of CPU memory. Typical problems need tens of mega- 
words of storage, a size which exceeds the central memory of most 
computer systems. To test the present algorithm we use a CONVEX 
computer system with 8 megawords of central msmory. Due to this 
limitation we consider wave propagation in a transversely-isotropic 
solid which rquire much less memory than a general anisotropic me- 
dium. 

Impkmentation of the REM algorithm needs three times the num- 
ber of displacements components at each grid point, three additional 
arrays for temporal storage, plus the arrays for the elasticities and 
density, i.e.. M = 15 for the isotropic case, M = 18 for the trans- 
versely isotropic case, and M = 34 for the general anisotropic case. 
Total memory rquirements are given by MNxNy Nz million words, 
a quantity that should not exceed the CPU memory to have efficient 
performances. N denotes number of grid points. 

The example considers wave propagation in a homogeneous trans- 
versely isotropic medium whose symmetry axis coincides with the 
vertical axis (Z-axis). The material is defined by the elasticities, 
cl1 = 66.6GPa, cl2 = lS.iGPa, cl3 = 39.4GPa, css = 39.9GPa 
and ~44 = lO.SGPa, and density p = 2590Kpm-3,.yhich represent 
Mesaverde clayshale (Thomsen, 1986). Figure 1 drsplays a section 
of the wave surfaces through a plane containing the symmetry axis. 
Modes qP and qSV are coupted while SH is pure. 3-D wave surfaces 
show azimuthal symmetry. 

Parameters of the numerical mesh are ,Vx = IVY = N;r = i5, wrth 
1)X = DY = DZ = 25m, the grid size. The motion is initiated 
by an X-directional force having a causal time function with 2082 
dominant frequency. Figure 2 displays snapshots after t = 0.2283 in 
XY, X2 and YZ-planes. through the source position and at 325m 
from this position: Z-axis is always vertical, in XY-planes Y-axis is 
vertical. Some characteristics shall be discussed. If we define the 
incidence plane by the propagation direction and the Z-axis, qP and 
qSV motion lie in this plane, while SH motion is normal to the plane. 

Hence, the u,-component does not contain SH motion. 

In-source planes: XY-plane: by isotropy wave surfaces sections are 
circles; u= and U, components show mainly qP and SH motion, and 
qSV motion around the line Y = 0. This is a contribution from the 
slowar branches of the qSV moda for which the wavenumber vector 
is not parallel to the line Y = 0. X2-plane: the u,-component has 
only qP and qSV motions since SH motion is normal to the plane. 
although by symmetry the us-component is zero. The cusps can 
be distinguished. The small contribution of SH motion in the u.- 
component is due to the uncertainty in the position of the source and 
the recording plane. The uncertainty is given by the grid size. YZ- 
plane: SH motion is normal to this plane. The characteristic ellipse 
can be seen in the u,-component. There is a strong contribution 
from the qSV mode around the line Y = 0 since the Green’s function 
in the symmetry axis presents a singularity in the second arrival (see 
Carcione et al., 1988). This contribution is not present in the bOtrOPk 

case. Off-source planes contain the three wave motions exapt the 

SB in the u,-component as mentioned before. 

Figure 3 shows synthetic seismograms. Coordinatea are relative to 
the source position; (a) only SH motion; (b) qP and SH motion. 
Anisotropy is manifested in the different slopes of the SE event in 
(a) and (b); (c) mainly SV motion and small qP. 
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BaQY VEoalY 

FIG. 1, Section of wave surfaces through a plane conlain- 
ing symmetry axis. 
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FIG. 2. Snapshots of wave field at several planes. 

(0) 

FIG. 3. Synthetic seismograms showing different wave 
modes. 
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