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We present a new migration method which utilizes the 
Gaussian beam approach. The method, though based on 
a high frequency approximation, operates on whole time
sections and not merely on selected digitized horizons as 
in ray tracing map migration. However the method 
maintains many of the advantages of ray tracing such 
as the ability to migrate only certain propagation angles 
or to focus on selected regions without having to 
downward continue beneath the whole area of the 
survey. 

In order to affect Gaussian beam migration, the 
recorded time section is first temporally transformed 
from the z-t domain into the z-w domain. The data is 
then beam stacked by the Gabor expansion (Raz, 
1987). The stacking can be carried out over receiver 
coordinates, or over both receiver and shot coordinates. 
The expansion coefficients give amplitudes of Gaussian 
beams where exh coefficient corresponds to a specific 
beam origin and beam angle. Each beam is then 
downward continued into the subsurface. The final 
migrated section consists of a sum of amplitude 
contributions from all beams at all frequencies. 

Beam migration can be carried out on both CMP 
stacked sections as well as on prestacked data. For the 
latter, as in conventional prestack migration there is a 
possibility of migrating all shots separately or of 
downward continuing both shots and receivers. 

Beam migration is demonstrated on a number of 
synthetic examples as well as on stacked field data. The 
results indicate that this migration is of high quality 
and offers a number of advantages over existing 
techniques. 

The Gabor expansion and beam stacking 

Given a function f (2) which possesses a Fourier 
transform f(k), its Gabor expansion is formally written 
aS: 

f(z) = xAm,, W,,(Z) m,n=O,il,~t2, . . (1) 
mn 

where, 

w,,(z) = w(z-mL) ezp(inRz) 1 (2) 

A,, are coefficients to be determined, L and fl are real 
positive constants related by, 

rlL = 2s , (3) 

and w(z) is a window function normalized according to: 

In the present study we use a Gaussian window 
function as originally proposed by Gabor (1946): 

W(2) = [q’;2_p[-+]2] . 
The beam coefficients A,, in (1) can be determined via 
the so called biorthogonal function rrnn according to: 

A mn = ; -/;n(4 f (4 dz 3 
-m 

where 

(5) 

4 

rmn(z) = 7(2 - mL)exp(innz) . (6) 

Relations (1) and (5) represent the forward and inverse 
transformations analogous to the Fourier transform 
pair. There is also the possibility of representing f (z) in 
(1) with the 7,,,,, functions and the A,, functions in (5) 
with the tu(z) functions. This constitutes the dual 
Gabor representation (Raz, 1987). 

The Gaussian beam migration uses the dual 
representation according to: 

where P(z,z,,w) is the transformed time section 
corresponding to a shot location z, with z the receiver 
coordinate. 

The coefficients P,,(z,,w) are given by, 

m 

Pmn(zs,w) = J P(z,z,,w) w(z - mL)exp(in!?z)dz (7) 
-m 

Relation (7) embodies the beam stacking procedure 
over receiver positions (Raz, 1987). In essence it 
consists of a series of spatial Fourier transforms of the 
product of the transformed time section and sliding 
window functions w(z - mL). 
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2 Gaussian beam migration 

The double beam stack is obtained after an additional 
transform over shot positions which yields: 

-co 

Where J represents the four indices (m,n,p,q). 

In implementing the beam stacking process condition 
(3) needs to be relaxed so that RL<2?r. This creates an 
additional degree of freedom needed in the migration. 
The mathematical implications are given in Raz and 
Einziger (1988). 

Common shot beam migration 

The beam stacked data P,,(z,,w) was shown to be 
interpretable as complex amplitudes of Gaussian beams 
emanating from nominal points z = mL and with 

nn 
emergence angles 4, = sin-’ - 

I 1 
k 

where k = w is 
C 

the wavenumber with c the surface velocity. Since the 
propagation rules of Gaussian beams are well known 
(e.g Cerveny et al., 1982 ), thii allows downward 
continuation of the beam stacked data. 

Beam migration consists of downward continuation of 
all the generated beams and accumulation of their 
amplitudes in “pixels” in a spatial z-z grid. The 
downward continued field is composed from 
contributions of beams emanating from all nominal 

points in all nominal directions at all frequencies. The 
final migrated section is obtained after application of an 
&aging condition to the downward continued field 
P(z,z,w) as in conventional migration (Reshef and 
Kosloff ,1986). 

Simultaneous migration of shot and receiver positions 

This migration uses data which is doubly beam stacked 
with respect to receiver as well as shot positions. It 
therefore requires data with uniform shot spacing. It is 
assumed that both shot and receiver sampling are 
sufficiently dense to avoid spatial aliasing. 

It was shown in Raz (1987) that the coefficients PJ(w) 
in equation (8) correspond to a beam pair, with a 
receiver beam emanating from z = mL at an angle 

4, = sin-’ y , 1 1 and shot location at Z, = pL at an 

413 angle 9, = sin-’ - . 
1 I 

k 
Thus the migration is affected 

by downward continuation of both beam types and 
cumulating results in pixels over all beam pairs and 
over all frequencies. In reality a beam pair will 
significantly contribute only to pixels within a well 
defined neighborhood of the intersection of the receiver 
and shot beams. 

- 

Examples 

The beam migration was tested against synthetic and 
field data. At first the features of the migration were 
evaluated with simple configurations such as a single 
diffractor in a uniform medium, a time section 
containing a single spike and planar dipping reflectors. 
Then more complicated synthetic examples were tested 
(e.g Fig l-3). Finally CMP stacked field data were 
migrated. 

‘These examples show that the beam migration produces 
high quality depth sections comparable to those of 
conventional high accuracy depth migration. 

Fig 1 presents a synthetic salt dome model which was 
tested. The corresponding s,ynthetic time section 
produced by a finite differences calculation is shown in 
Fig 2 (Freire, 1988). The migra.ted section is shown in 

Fig 3. 

Conclusions 

We have presented a new migration technique of beam 
stacked data. The examples tested show that this 
migration is capable of producing high quality results 
comparable to those of high accuracy conventional 
depth migration techniques. The results contain very 
few migration artifacts such as wraparound or edge 
effects. 

Owing to the local nature of Gaussian beams there 
exists a possibility of downward continuing only 
selected beams and thus imaging a specific well defined 
region of interest. This advantage may become more 
important yet in three dimensional migration. From a 
computational viewpoint the migration can be 
performed efficiently however vectorization and 
parallelism may require more attention than with direct 
methods based on finite differences for which 
vectorization is natural. 

The simultaneous migration of both receiver and shot 
coordinates is considerably faster than common shot 
migration and subsequent stacking of all shot images. It 
therefore may prove to be the more attractive 
alternative. 
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FIG. 1. Salt dome model configuration. 

FIG. 2. Synthetic zero-offset time section for dome model. 

FIG. 3. Migrated depth section for dome model. 
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