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SUMMARY 

The implementation of the free surface boundary condition 

into a composite spectral Chebyshev-Fourier method for solv- 

ing the three dimensional equations of motion is presented. 

In this method spatial derivatives with respect to the vertical 

direction are calculated with a Chebyshev spectral method, 

while differencing with respect to the horizontal directions is 

performed with the Fourier method. The technique can han- 

dle free surface boundary conditions in a more rigorous manner 

than the ordinary Fourier method. It therefore appears well- 

suited for realistic full wave modeling, in particular of near 

surface layer problems. 

Isotropic media and transversely isotropic media with a vertical 

axis of symmetry are considered. A comparison of the isotropic 

modeling results with the analytic solution for Lamb’s problem 

shows the high accuracy of the alogorithm. 

Modeling examples are presented for a 30 thin layer overlaying 

an elastic halfspace and a 30 transversely isotropic halfrpace. 

INTRODUCTION 

In realistic seismic modeling the influence of the free surface 

cannot be ignored. Reflections and conversions at the free 

surface have to be taken into account as well as the influence 

of the low velocity weathering zone. The formulation of the 

free surface boundary condition is not always simple with grid 

methods. For low order finite differences the free surface con- 

dition can be applied with the same level of accuracy as the 

method itself (e.g. Vidale and Clayton, 1986). For forth order 

finite diierences however only an approximation of the con- 

dition has been found (Bayliss et al., 1986). For the Fourier 

method free surface modeling requires “zero padding” (Kosloff 

et al., 1984). However, results are sufficiently accurate only 

if the source and the receivers are located at greater depth. 

While modeling the free surface is difficult with the ordinary 

Fourier method due to its periodicity, the non periodic Cheby- 

shev expansion allows for a proper implementation of the free 

surface condition. In this way free surface situations can be 

correctly handled by the highly accurate spectral method. 

EQUATIONS OF MOTION 

The equations of motion for a three-dimensional isotopic 

medium are given by 

0) 
where zj are Cartesian coordinates, oij are the stress compo- 
nents, ud are the displacements, p is the density and fc denotes 
the body forces. 

The stress-strain relations for an elastic isotropic medium are 

given by 
Uij = AC&ij + 2/bCij (2) 

where X and p are Lame’s parameters, 6, is Kronecker’s sym- 

bol and Eij are the strains defined as 

(3) 

The material parameters e, A and p can be ubitrarily vary in 

space. Equation (1) is a system of three coupled hyperbolic 

differential quations of second order in time This system can 

be rewritten as a system of first order equations in time if we 

state it in terms of the particle velocity vi and the stresses Qij 

instead of the diiplrcements (e.g. Virieux, 1986; Boyliss et 

al., 1986). 

We thus have 
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With 

w = (u.,vy,v.,Q..,~“yy,Q..,Q.v,Q..,~~~)T 

we can rewrite (4) as 

(5) 

where A, B and C are 0 x 0 matrices containing material 

parameters. 
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The variables of (5) are discretized on a spatial grid which is 2 Qzz- 
( 

x 

uniform in the z and y directions and nonuniform in the I 
quzz > 

direction. The grid points in the e direction are calculated by 
S=g-‘W=; % - dz% . (9) 

a mapping tj = Zj(t) from the Chebyshev sampling points 
OZZ - v@ u. 

tj = cos #,j = 0, . . ..N with N + 1 grid points in the t CYZ + fi VY 

direction. This mapping stretches the grid at the edges and 
oa!.? + fi% 

as a consequence improves the stability requirements of the 622 - dmv, 

method. The mapping is discussed in detail in Kosloff and UZZ + dm % 

Tal-Ezer (1990). Horizontal derivatives are calculated by the 

Fourier method (Gazdag, 1981; Kosloff and Baysal, 1982). The specification of the boundary conditions at the free sur- 

For the vertical derivatives a discrete Chebyshev expansion face, i.e. uz = u,“I = uz = 0 yields together with the condi- 

and the recursion relation for the coefficients of the derivative tion that outgoing characteristic variables remain unmodified 

(Gottlieb and Orzag, 1977) have been used. The numerical after application of the boundary conditions (Gottlieb et al., 

implementation of this solution scheme has been described by 1982): 

Kosloff et al. (1990). N- x 
*vu _QYY - a+= 

x 
FREE SURFACE 

N- 
gala 

--Qa= - ~uZL 

The boundary condition for a flat free surface is zero traction, Nzt, +byr 

i.e. 
vu s 

4% * (10) 

a,, = by. = Q,, - - 0. (6) $Ly,+k 

The calculation of stresses by numerical methods normally 
JBTi 

gives non-zero values for u.,,uyr and o;, at the free sur- 

face. If we require zero values for these stresses, however, we 

v,” =v, t && 

have to correct for u..,uyy,tr,,vy and vZ as well. Therefore The superscript N denotea the values of the variables at the 

we need a relation between vi and u;j , which can be found free surface after the correction. These corrections have to be 

by characteristic variables (Gottlieb et al., 1982; Bayliss et al., applied to stresses and particle velocities. The first character- 

1986). istic variable, i.e. u.,,, remains unchanged. 

A one-dimensional analysis (i.e. propagation of plane waves 

normal to the free surface) is used in order to calculate the 

characteristic variables. Thus we consider the following equa- EXAMPLES 

tion: 
8W 8W 

Fig. 1 shows the geometry of the 30 isotropic model. A thin 

-=C-. (7) 
layer of 15 m thickness is overlaying a homogeneous halfspace. 

6t 82 The velocity of the P- and S-waves are 2000 m/s and 1155 

After diagonalization an equation of the form 
m/s in the layer and 4000 m/s and 2309 m/s in the halfspace, 

respectively. The model is diretized with 126 x 125 x 81 

!E=*8s 
gridpoints in the x-, y- and z-direction, respectively. The grid 

8t 82 
(8) spacing is 10 m. 

In this example a horizontal point force in x-direction with 50 

is found, where Hz cutoff frequency is used. Snaprhots of the x- and the z- 

A = Q-‘CQ component of the particle velocity on the surface at 500 ms 

propagation time are shown in Fig. 2. Since the source wss 

and placed only 0.9 m below the surface the energy is mainly prop- 

B=Q-‘W. 
agating as surface waves. In case of vertical inhomogeneous 

media and a horizontal point force Love- and Reykigh-waves 

A is a diagonal matrix and the components of the vector B are generated. Both waves show dispenion. Besides the body 

are the characteristic variables. To calculate Q-’ the eigen- waves in the x-direction only Rayleigh-waves and in the Y_ 

vectors of C have to be found. These eigenvectors are column direction only Love-waves are propagated. 

vectors of the matrix Q. From the inverse matrix Q-’ we can Fig. 3 shows snapshots of vertical planes at 500 ms propa- 

calculate the characteristic variables: gation time In the xz-plane (top) the Rayleigh wave and the 

S-type body wave can be seen, while the yz-plane (bottom) 

shows the Love-wave and also the S-wave. 
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Fig. 1 

2 velocity, xy-plane, t=500 me 

x velocity, xy-plane, t=500 nn 

Fig. 2 

x velocity, x2-plane, t=!iOO ms 

x velocity, p-plant, t=500 ms 

Fig. 3 

Love wave 

Fig. 4 
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Seismogram recordings in the x- and z-directions at lines indi- 

cated by dashed lines also show the surface wave arrivals (Fig. 

4). The dispersive character of the surface waves can be seen 
very clearly. 

An example of wave propagation in a 3D transversely isotropic 

halfspace is shown in Fig. 5. The model is discretized by 

135x81~81 gridpoints in the x-, y- and z-direction, respec- 

tively. The gridspacing is 8 m. 

The qP-wave velocity in the medium varies between 2740 m/s 

and 2960 m/s. The qSV velocity is 860 m/s up to 1415 m/s, 

while the qSH velocity varies between 1000 m/s and 1415 m/s. 

The snapshots show the vertical (2) component of the particle 

velocity in a xr-plane at 200 and 400 ms propagation time

The horizontal point force was placed at a depth of 0.75 m. 

Both snapshots show the wave front of the qP-wave and the 

qSV-wave. The later snapshot (400 ms) shows the qSV-wave 

with the cusps and a headwave generated at the free surface. 

A comparison of the modeling results with the analytical solu- 

tion of Lamb’s problem in an isotropic half space shows very 

good agreement (Fig. 6). The source with a 50 HZ cutoff 

frequency Ricker wavelet is placed at 106 m depth. The hori- 
zontal offset is 60 m. Since the source is a vertical point force 

the problem is symmetric about the vertical axis. The figure 

SLOWS comparisons of the horizontal (x) and the vertical (z) 

displacements. 

2 velocity, xx-plane, t=200 M 

2 velocity, x2-plane, t=QOO ms 

Fig. 5 

Modelling . z 
Lamb 

Fig. 6 
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