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Wave propagation in the vicinity of cylindrical objects 
is a problem which appears in many branches of physics 
and engineering. In particular, in the area of Geophysics 
there are many problems which include the presence of 
a cylindrical borehole. Unfortunatly, closed form 
solutions for such problems exist only for the most 
simple configurations. Therefore, presence of material 
variability as in the earth, one needs to resort to 
numerical solution techniques. However, use of methods 
such as finite differences, finite elements or 
pseudospectral methods in cartes&n geometry will 
usually not be successful due to the small size of the 
borehole (on the order of 20 cm ) compared to the 
distance which the waves propagate (often on the order 
of few kilometers). In addition the representation of a 
cylindrical object on a rectangular mesh causes 
spurrious diffractions. 
In this work we present a spectral technique for solving 
the two dimensional acoustic and elastic wave 
propagation problems in the presence of cylindrical 
objects. The method is based on spatial discretization 
of the solution in a cylindrical (r,B) coordinate system 
where r is the distance from the center of the numerical 
mesh and 0 is the radial angle. The solution is 
approximated by a Chebychev expansion in the I 
direction which results in non-uniform grid spring 
(Figure 1). The fine grid spacing in the center of the 
mesh has the advantage of allowing many grid points to 
cover a very small physical space in that region. The 
Chebychev expansion also allows to treat the absorbing 
boundary conditions at the edges of the grid. For the 
azimuthal angle coordinate, we use the periodic Fourier 
expansion. 

Equations of Motion for an Acoustic Medium 

The numerical algorithm for the acoustic case is based 
on the solution of the acoustic wave equation for 
constant density in two dimensional cylindrical 
coordinates (r,8) given by, 

(1) 

where I is the radius, 8 is the radial angle, P is the 
pressure field, S is the source term and t denotes time
For the numerical algorithm, we recast (1) as a system 
of three coupled first order equations given by: 

(2) 
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A= I 0 0 and B = 00 0 (3) 
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The numerical algorithm solves equation (2) with 
appropriate boundary condition at I = a and at I = 6 . 

Equations of motion for an Elastic Medium 

The numerical algorithm for the elastic csse is based on 
a solution of the equations of conservation of 
momentum combined with the stress-strain relation for 
an isotropic elastic solid undergoing infinitesimal 
deformation. For two dimensional cylindrical 
coordinates (r,8) the equations of momentum 
conservation are given by: 

(Fung, 1665). where U, and U# are the I direction and fJ 
direction displacements, e,, , (rgfl and cr,* are the stress 
components, f, and fs are body forces per unit volume, 
and p denotes the density. 
The stress-strain relation for an isotropic elastic solid 
expressed in terms of displacement derivatives in 
cylindrical coordinate reads: 

A au, ah’ &, 
5e=7x+ry-, 8 

where x and p are respectively the rigidity and the 
shear modulus. 
For the numerical algorithm described in this study 
equations (4) and (5) are recast as a system of five 
coupled first order equations given by: 

where 

0 0 I/p 0 0 
0 0 0 0 l/f 

A = )l+2p 0 0 0 0 

x 0 0 0 0 
0 /I 0 0 0 

and - 
TO 0 00 UP41 

0 0 0 ll(Pd 0 
B= 0 A/r 0 0 0 

0 (X+&4)/r 0 0 0 
p/r 0 0 0 0 

The numerical algorithm solves equation (6) with 
appropriate boundary condition at r = c and at r = b 
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Solution Scheme Boundary Conditions for the Acoustic Case 

As mentiond above, the numerical algorithm solves 
equation (2) or equation (6) with free surface or rigid 
boundary conditions at r = a (see figure 2) and with 
absorbing boundary conditions at the edges of the grid, 
at I = 6 . The variables are discretized on a spatial grid 
which is non uniform in the r direction and uniform in 
the 0 variable (Figure 1). 
Equations (2) and (6) contains both spatial and 
temporal derivatives. For the r direction derivative we 
use a discrete Chebychev expansion: 

j = 0, ,N, (9) 

where N,+l is the number of grid points in the r 
direction, -1 < Yj 51 is the j’” sampling point in that 
direction, Tk are the discrete Chebychev polynomials, 
and the coefficients bk are given by the recursion 
relation: 

bk_, = bit, t 2kat k = N,, .,2 (10) 

where 
241 + 9 4=- 

(Gottlieb and Orszag21977, Kosloff et. al. 1990). ok are 
the coefficientsof the discrete expansion of the original 
function, according to 

N, 
Cj) = C Ok Tk(Fj) 

k:O 
(11) 

(Hamming, 1978). 

In actual applications the 5 coordinate is related to the 
radius r by r = a t % (31) (b-a) . Therefore, 

zzi=~..-L 
ar aTi (b-4) 

For the tJ direction derivative we use the Fourier 
transform property: 

% - 
+ i&f (12) 

where ; is the Fourier transform of f and i is 6 
(Bracewell 1978). The wave number K, is given by: 

Ke = j-l, j=l, (.., No (13) 

where A’# is the number of grid points in the azimuthal 
direction. For advancing the solution in time we use a 
fourth order Runge-Kutta method. 

Three different types of boundary conditions are 
applied at the boundaries of the numerical grid. The 
free surface or rigid boundary condition is applied at 
r = a (figure 2) and the absorbing boundary condition 
is applied on the edges of the grid, at I = b . The 
appropriate boundary condition is achieved by setting 
the correct characteristic variables (Gottlieb et. al. 
1982, Baylis et. al. 1986, Kosloff et. al. 1996). This 
process is based only on considering wave motion in the 
direction normal to the boundary, which in this case is 
the radial direction (Baylii et. al., 1986). At r = b we 
apply an absorbing boundary condition. We set the 
characteristic variable describing motion propagating 
outwards to remain constant and setting to zero the 
characteristic variable describing motion propagating 
into the grid according to: 

where (old) and (new) respectively, denote values of 
variables before and after application of the boundary 
condition. At r = a we apply either a free surface 
boundary condition or a rigid boundary condition. For 
the free surface boundary condition we retain the 
characteristic variable describing a wavelet that 
propagates towards the origin constant and zero the 
pressure field. This gives: 

I (15) 

o = i)‘“““’ 

Boundary Conditions for the Elastic Case 

As in the acoustic case, absorbing boundary conditions 
are achieved by setting the correct characteristic 
variables. The rigid boundary condition at I = s 
requires zero values for U, and for U, . Keeping 
outgoing characteristic variables unmodified after 
application of the boundary condition implies, 

where V, and V, are respectively P and S waves 
velocity. At r = b we use the absorbing condition 
which yields, 

(17) 
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Example - Scattering by a Cylindrical Object 

We set r = a figure 2) to be 80 meters and we locate a 
source with h ighcut 
horizontal ( 8 = o ) , 

frequency of 40 Hz on the 
at a distance of 170 m from the 

origin (Figure 3). Three receivers are situated at 
different locations. Receiver A is located 200 m to the 
right of the source, receiver E at a distance of 370 w 
from the center and at an azimuthal angle of 15 
degrees, and receiver C is located at a distance of 450 m 
from the center and at an azimuthal angle of 30 
degrees. Figures 4a , 4b , 4c and 4d show the pressure 
wave field at times 0.1 act , 0.2 see , 0.3 8ec and 0.4 xc , 
respectively. We can see the direct wave and the 
partitution of energy by the circular object. Part of the 
energy is reflected and part crawls along the cylindrical 
interface. Figures 54 and 56 show the time history 
seismograms that were recorded at receivers B and C , 
respectively. The continuous line represents the 
numerical result; the dots are the analytical result. We 
also locate two receivers on the surface of the 
cylindrical object, bn I = a . The first receiver is located 
at an azimuthal angle of zero degrees, and the second 
one at an angle of 15 degrees. Figures 6a and 6b shows 
respectively the time history seismograms that was 
recorded at an angle of zero degrees and at an angle of 
15 degrees. Again, the continuous line gives the 
numerical result while the dots are the analytical 
results. 

Figure 1: Chebychev-Fourier numerical grid. 
number of 0 grid points is 70. 
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Figure 2: Confiiation of boundary conditions. 
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Figure 3: Scattering by a cylindrical object. 
Continuous liiea are diit wave8 paths and 
broken lines are reflected waves paths. 
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Figure 4: Scattering by a cyhlricd object. 
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Figure 5: Seiiams recorded by receivers B and C. 

Fiplrrc 6: Seiimagrams mmrded on the cylindrical surface. 
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