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SUMMARY 

A 3-dimensional numerical modeling scheme which accounts 

for surface topography is presented. The method is based on 

spectral derivative operators. Spatial differencing in the hori- 

zontal directions is performed by the Fourier method, whereas 

vertical derivatives are carried out by a Chebyshev method 

which allows for the incorporation of boundary conditions, The 

implementation of surface topography is done by mapping a 

rectangular grid onto a curved grid. 

denotes the body forces. The stress-strain relations for an 

elastic isotropic medium are given by 

Oij = XEkkSij + 2/LLEij (2) 

where X and /r are Lame’s parameters, Sij is Kronecker’s sym- 

bol and eij are the strains defined as 

The study of near surface effects of seismic wave propaga- 

tion in the presence of surface topography is important since 

non-ray effects such as diffractions and scattering at rough 

surfaces must be considered as wave phenomena. 

The modeling algorithm presented here can serve as a tool for 

understanding these phenomena. All wave types are included 

in the solution since the full wave field is computed. 

A 3D modeling example of a half space with a trench at the 

surface is given. 

Eij=~(~+~). (3) 

The material parameters e, X and /J can be arbitrarily vary in 

space. 

SURFACE TOPOGRAPHY 

The surface topography is introduced into the numerical al- 

gorithm by mapping a J-dimensional rectangular grid onto a 

curved grid. The rectangular grid has a (J, v, C)-coordinate 

INTRODUCTION 
system, whereas the curved grid has the (2, Y, z&coordinates. 

Surface topography and the weathered zone have great influ- 
We depart from the following mapping function: 

ence on seismic reflection surveys. In case of mild topogra- 

phy and low velocity heterogeneity the effects of topography 
~(<>rJ>C) = F > 

and the weathering zone can be removed by static correc- 

tions. However, in case of a rough surface and a heteroge- Y(S, u7 C) = ?J 

neous weathering layer the seismograms are contaminated by and 
diffractions and the behavior of the ground roll becomes more 

difficult. c 

Various direct methods can be applied to the surface topogra- 
z({,u,i’) = Zo(&rJ) t ---(%a, 

c 
- zo(&v)) (4) 

mar 

phy problem in conjunction with high material heterogeneity, 

e.g. finite differences and finite elements, where the latter 

method is more flexible. However, these methods are usually 

of low order. 

It is difficult to incorporate boundary conditions into high or- 

der finite difference or spectral methods. An exception is the 

Chebyshev spectral method (Kosloff et al., 1990) which is of 

high accuracy. This method can handle the free surface bound- 

ary conditions correctly by using the concept of characteristic 

variables (Gottlieb et al., 1982). 

where zp(<,v) is a topography function which describes the 

elevation above some reference level. smao is the maximum 

depth of the model which is assumed to have a plane horizontal 

bottom. 

VELOCITY-STRESS FORMULATION ON THE CURVED 

GRID 

We rewrite the equations of motion (1) into a system of first 

order equations in time (Bayliss et al., 1986; Virieux, 1986) 

and apply the chain rule to account for the stretching of the 

EQUATION OF MOTION 
grid in the z-direction according to eq.(3): 

The equations of motion for a three-dimensional isotopic medium 

are given by 

ALa 

pp = 2 t fi, i = 1,2,3 (1) 
J 

where xj are Cartesian coordinates, Uij are the stress com- 

ponents, ui are the displacements, e is the density and fi 
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2 3-D surface topography modeling 

A similar approach has been used by Fornberg (1988) to rep- 

resent curved interfaces in 2-dimensional modeling. For the 

computation of eq.(5) we need 3 x and g given by: 
ax’ ay 

(6) 

MODELING ALGORITHM 

The variables of eq.(5) are discretized on a spatial grid, where 

the grid spacings in the c- and v-directions are uniform and 

nonuniform in the C-direction. 

Differencing with respect to the horizontal directions are car- 

ried out by the Fourier method, while the vertical derivatives 

are performed by a Chebyshev derivative operator (Kosloff et 

al., 1990). 

For the time integration a fourth order Taylor expansion of 

the formal solution in conjunction with time stepping is used 

(Tessmer, 1991). 

FREE SURFACE WITH TOPOGRAPHY 

The boundary conditions at a curved free surface are zero 

normal tractions, i.e. in a local coordinate system with the 

z/-axis normal to the surface element 

I , I 
uo, = UYZ = utz = 0. (7) 

Requiring the above boundary conditions implies modifications 

of the remaining variables by characteristic treatment (Gottlieb 

et al., 1982; Bayliss et al., 1986). The modified variables then 

read (Tessmer et al., 1990): 

I N x 
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v@ 

(5) 

(8) 

The supersprict N denotes the variables at the free surface 

after the corrections. Only u& remains unchanged. 

Before the application of the characteristic treatment the par- 

ticle velocities and the stresses which are given in the (r, y, z)- 

coordinate system must be transformed into the local (x’, y’, z’)- 

coordinate system where the z’-axis is normal on the surface. 

The transformation into the local (z’, y’, z’)-coordinate system 

is given by: 

Vi: = QjUj 

Uij = a,kajlUkl (9) 

with ;,j, k,l = 1,2,3, where a;j are the components of a 

rotation matrix, and the indices 1,2 and 3 correspond to the 

z-,y- and z- coordinate, respectively. 

The elements of the rotation matrix are given by: 

a11 = cos8+a2(1-cosq 

al2 = ysiniY + $?(l - cost9) 

a13 = -@sin8 f cq(l - cost9) 

a21 = -ysin29 + @(I - cos8) 

a22 = cos79tps(1-cost9) 

a23= crsint9+/3y(l-cos9) 

a31 = psinti+cq(l-costi) 

a32 = -rusinO + &(l - costi) 

a33 = cos 29 + y2( 1 - cos t9) 

(16) 
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3-D surface topography modeling 3 

where 
n . e, 

cos 29 = - 
Inl 

a=g-$,p=g-$gand-r=g,$andg=nxe,. The 

normal vector on the surface element is given by: 

n= (z,g,-l)T. 

ez,ey and e, are unit vectors, 

After the modifications the variables must be transformed back 

into the original (G, y, z)-coordinate system. 
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model the spacings with respect to the vertical direction are 
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The respective seismic velocities for the P- and S-waves are 

2000 m/s and 1155 m/s. A vertical point force is applied 10 

grid points (52 m) below the surface. The cutoff frequency is 

35 Hz with a Ricker like time history. The total propagation 

time is 800 ms with timesteps of 1 ms. The model has a 

trench at the surface along the y-direction (Fig.1). The depth 

of the trench is 28.5 m, i.e. approx. i dominant wavelength. 

At two receiver lines, parallel and perpendicular to the trench, 

seismograms were recorded (Fig.2). The seismogram section 

(vertical component) in the s-direction (Line 1) shows the 

direct P-wave and with strong amplitude the Rayleigh wave 

(R). Due to scrattering at the trench the amplitude of the 

Rayleigh wave is reduced in the right hand part of the sections. 

Some energy is scattered back to the left hand side (RR). The 

section in the y-direction (Line 2) shows undisturbed P- and 

Rayleigh waves. In addition in front of the ordinary Rayleigh 

wave a secondary Rayleigh wave (PR) induced by scattering 

of the direct P-wave traveling can be observed. 

Snapshots of the wave field of horizontal (zy) and vertical (zz 

and yz) planes at the propagation times 400 ms and 700 ms 

are displayed in Fig.3. The zy-snapshots represent the wave 

field at the surface. The zt- and yz- planes contain receiver 

line 1 and line 2, respectively, and the source location. The 

direct P- and S-waves, the head wave (H) and Rayleigh waves 

(R and RR) are marked in the figure. 
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CONCLUSION 

A spectral method which can handle 3D surface topography 

with high accuracy has been presented. The incorporation of 

the boundary conditions has been done in a similar manner 

as in Tessmer et al. (1990). However the algorithm had to 

be modified slightly since the normal direction on the surface 

varies in case of surface topography. The method is allmost 

of the same efficiency as the algorithm mentioned above. The 

presented method allows to study near surface effects of wave 

propagation phenomena which are caused by a rough surface, 

as there are diffractions, scattering, multiple reflections and 

converted waves. 

Virieux,J., 1986. P-SV wave propagation in heterogeneous 

media: Velocity-stress finite-difference method: Geophysics, 
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4 3-D surface topography modeling 

3D Model 
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Line 2 
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