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SUMMARY
Calculation of 3D traveltimes is needed for the

application of Kirchhoff integral based prestack

depth migration. 3D prestack imaging requires a

significantly large amount of computation, where a

major part is dedicated to traveltime calculations.

Therefore, a practical method of calculating

traveltimes is needed.

Our algorithm was developed with the following
objectives: (a) the numerical scheme should be
simple and efficient, (b) the traveltimes should
represent arrival times of body waves, and (c) the
calculated traveltime field should be accurate for
steep dip structures.

To achieve these objectives, we (a) directly
solve the 3D Eikonal equation on a Cartesian
coordinate system, (b) modify the over-critical
arrivals on a special cylindrical coordinate system,
and (c) apply a spatial convolutional operator to
overcome errors introduced by low order
approximations.

INTRODUCTION
Several authors have presented solutions to the

Eikonal equation in three dimensional space.

Schneider (1993) and Fowler (1994) solved the

Eikonal equation using a spherical coordinate

system, and Jervis et al. (1994) modified the

method for the calculation of minimum traveltimes.

However, the works which inspired our

development were the 2D solutions presented by

Reshef and Kosloff (1986), and by Van Trier and

Symes (1988).

In the algorithm presented in this paper,
propagation of the traveltime solution from depth z
to depth z+dz is achieved by three steps. First,
downward extrapolation is applied. Second, the

locations of the over-critical waves are identified and
the traveltimes associated with these locations are
replaced by body waves arrivals. Third, a balancing
operator is applied to the solution, fixing inconsistent
traveltimes resulting by numerical approximations.

The resulting traveltime cubes consist of body
wave arrival times only and are accurate for
structures that include steep dips and severe velocity
variations. Moreover, since the algorithm requires
that only a small amount of information need to be
stored, the solution scheme becomes very efficient
when applied on massively parallel computers.

SOLUTION SCHEME
Time field propagation starts by downward

extrapolating the time field  from depth  to

depth The Eikonal equation

is directly solved on a Cartesian coordinate system

   =        
where dx, dy, and dz represent spatial sampling in the
X, y, and z directions, respectively; 1  1 

 and Nx, Ny, and  represent the number of
grid points in x, y, and  directions respectively. A
finite difference operator is used for application of
spatial derivatives, and a Runge-Kutta algorithm is
used for numerical integration (Reshef, 199 1).

The resulting traveltime field, 
contains arrival times of body-waves as well as of
head-waves. In order to replace the traveltimes of the
(first to arrive) head-waves with the appropriate body-
waves (direct arrivals), we transform  to a
special cylindrical coordinate system  

 = 

which follows the direction of propagation of the
wave-fronts (see figure 1). The cylindrical coordinate
system  is constructed using a local radius dr
and a local angle   is the angle of propagation
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2 Mixed-grid solution

of the wave fronts on a grid node of G; dr is the final step, we apply a 2D spatial convolutional
distance from a grid node of G to the intersection operation, aiming to correct local inconstancies:
with the neighbor grid cell; and dz is the same as in  =  * 
G. where  is the 3x3 matrix:

Locating all the x, y nodes of G where head-
waves arrivals exist, we exclude the traveltime
information represented by these nodes. Using the
upwind condition (Van Trier and Symes, 1991). we
use the transformed traveltime field  and
stretch the solution along each local radius, back to
the above x, y node on G. The modified traveltime
function  now contains arrival times
associated with body-waves only.

The traveltime field T’ might contain some noise,
resulting from numerical approximations. In order
to assure. stability, differencing functions might
need some degree of smoothness. Therefore, as a

This smoothing convolutional operator permits us
to smooth the traveltimes instead of the difference
operators. Derived from a Hanning window, Q is
very smooth in the wave-number domain, has high
tangency at zero and Nyquist wave-numbers, and
therefore does not bias the calculated traveltimes.

EXAMPLE

Figure 1: Mixed grid. Horizontal s/ice through the 3D
mesh for a case of circular wave-fronts. In the solution
scheme, downward extrapolation is done on the
cartesian nodes, and head-wave to body-wave
corrections are made on the cylindrical nodes.

Figure 2 shows a model, containing a salt body
embedded in a series of semi-flat layers. The
velocity in the layers ranges from 2000 m/s up to
3500 m/s, and the salt velocity is 4000 m/s.
Figure 3 shows the full traveltime cube calculated
for a source positioned at the surface. in the center
of the model. The cube size is 200x200x300.
As we can see, the traveltime contours are circular
and symmetric on the surface. At the subsurface,
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Figure 2:  model. (a) View from the side.
(b) View from the bottom.

the contours are continuous within the layers, but
are not continuous when crossing layer boundaries.
Figure 4 is  vertical cut through the full size cube.
In this view we can see the behavior of body waves
when propagating from low to high velocity layers.
Figure 5 show two horizontal slices of the

 cube. In these figures we can observe
how the wave fronts follow the velocity structure.
The wave-fronts are not circular any more, and
discontinuity occurs at velocity interfaces.

CONCLUSIONS
A new and efficient method for calculation of
 traveltime functions for  depth

migration has been presented. The algorithm is
based on solving the  Eikonal equation on 
mixed grid. The traveltime function is extrapolated
using a  grid, and head-wave arrivals are
replaced by body-waves using a special cylindrical
grid. The resulted traveltime cube contains arrival
times associated with body waves only.

Figure 3:  cube calculated for the salt
mode/presented in figure 2. The cube  is

Figure 4:  slice of the cube shown in figure
3. The  field consists of body waves only.



Since the solution method is very efficient,
traveltime cubes can be calculated very fast,
enabling the use of the algorithm scheme in a 3D
prestack depth migration program.
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Figure 5: Horizontal slices of the cube shown in
figure 3. (a) Slice at about 1000 m. (b) S/ice at
about 2000 m. Traveltime wave-fronts follow the
structure of the velocity field.
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