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Summary

Paraxial rays are used for 3D two point ray tracing in complex structures. In this work we use dynamic ray tracing which is
formulated in cartessian coordinates. This formulation allows for more flexibility in perturbing the initial slowness and takeoff point

of the rays, as compared to the more common dynamic ray tracing in ray centered coordinates. Furthermore, the paraxial rays are
adjusted iteratively to conform to the surface and interface topography, and to have slowness vectors with the correct length. This
extends considerably the range of validity of the paraxial approximation. We describe implementation of different types of two
point ray tracing which include CRP ray tracing, normal incidence ray tracing and CMP ray tracing.

Introduction

Three dimensional ray tracing in complex structures can be very cumbersome and slow. Two point ray tracing in particular is
difficult because of the need to have the rays converge to specified surface locations or to specified offsets. In this work we adopted
from Virieux et al (1988) a formulation of dynamic ray tracing in cartessian coordinates for performing two point ray tracing. This
formulation has the advantage of working in a single coordinated system instead of having to transform between a local ray centered
system and the global system. In addition the cartessian formulation allows for three dimensional perturbations in the initial takeoff
point of the ray and the initial slowness, as opposed to the two dimensional perturbations perpendicular to the initial ray which are
allowed in ray centered dynamic ray tracing.

We describe implementation of dynamic ray tracing for CRP ray tracing, normal incidence ray tracing and CMP ray tracing. In
addition to the original formulation of Virieux et al (1988), in our implementation the paraxial rays are adjusted iteratively to
conform to varying surface and reflector topography and velocity, and for possessing a correct magnitude of the initial slowness at
the takeoff location.

Basic Equations

The ray equations are given by;

dxi
dc _ Pi
W _ ou
do axi
i=13
(Ea. 1)
Where x(0) is the ray patrpi(o) is the ray slowness; 1/c with v, 2 the medium velocity ang' rayczdt with

t the travel time.
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Given a central ray with ray patk(o) and slowngx®) , we consider a neighboring ray witR(gathdx(o) and
p(o) +dp(o) . It was shown by Virieux et al (1988) that to first order,

ox = Q16p0 + Q25X0

and,

op = P16p0 + P26x0

where 6p0 andx’ are the perturbations in the initial ray slowness and takeoff points respe@jivelyP, and are 3 by 3 matrices
which satisfy the coupled equations:

dg;
G
dP 1 2
o = 5000
(Eq. 2)
With initial conditionsQ,(0) = 0 , andP;(0) =1 an®,(0) =1 P,(0) = 0 withthe unit matrix. In the following we

describe the use of these equations for different types of two point ray tracing.
A single ray connecting a subsurface point and a specified point on the surface

Assume that a central ray has been traced from a subsurface point A (Fig. 1) to the surface. This ray hits the surface at point B which
is at a distancelx  from the target surface point C. Denoting the surface topography by the Rinctyoz) = z— f(x y)= 0

and denotingdx the distance between the surface termination of central ray and the paraxial ray at point B (Fig. 1), the quantities
are related by,

dx = dx+ p(x+dX)T, (Eq. 3)

Wheredt is the remaining travel time along the paraxial ray to the surface (can also be negativéx Since is not known a priori,
p(x+ &x) is obtained iteratively wher&x  from the previous iteration is used. A scalar multiplication of{B) by and use of the
orthogonality of OF todx , yields a relation connectidg  and

dx = EX—S—?‘;
(Eq. 4)
(Farra et al, 1989). In the current configuration whBe = 0 , equations (2) and (4) yield a direct connection between the surface
distancedx and the initial slowness perturbatﬁqu? . We expiqr?d as a linear combination;
3p° = ap’+Byp’ +Byp°
(Eq. 5)

where pl anq)2 are two coperpendicular vectors which are also perpendicular to the initial slm%vness . An additional constraint

which is imposed orﬁp0 is that the perturbed slowness be of the correct magnitude,

p°+3p7 = u°

(Eq. 6)
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The horizontal components of equation (4) together with (2),(5) and (6) constitute a determinate set of equations for the unknowns
a , B, andB, . The system is solved iteratively.

Normal incidence ray tracing
In this case the central ray is normal to the interface from which it emerges and impinges on the surface atddistance from the

desired location (Fig. 2b). For the paraxial ray we seek a perturh‘ht?on parallel to the interface from which the ray emerged.
However when the interface is not flat, there is also a chép8e in initial slowness. Consedugntly,épo and are calculated
iteratively.

CRP ray tracing

In this ray tracing the objective is to find a ray pair which obeys Snell's law at the initial point and reaches the surface at a specified
vector offset2h (Fig. 2c). First a central ray pair satisfying Snell's law is traced. Dedbting  the difference between the desired
half offset and the actual offset of the central ray pair, the two respective rays are perturbed by respectivé p(fnourﬁtpg and

The perturbed rays reach the surface at the specified offset and obey Snell's law at their point of emergence.

CMP ray tracing

CMP ray tracing (Fig. 2d) is affected by first shooting a ray pair which obeys Snell's law. Demefing dx,and the distances

between the ray pair and the shot and receiver positions respectively, we seek perttmlpqﬁoﬁszo ,éxo and for which the
paraxial ray pair will reach the respective shot and receiver locations and will also obey Snell's law at the point of emergence.

Example

We illustrate the paraxial ray tracing for perturbation of single rays connecting a subsurface point and specified surface locations.
The example is of a complex 3D structure consisting of layers with laterally varying velocity. Fig. 3 depicts a section of the velocity
model. The 3D paraxial ray tracing is tested for a line which is at an angle to the dip direction of the structure. For the tests, a fan

of rays originating from the spatial locatioy = 2000m y, = 2000m , apgd= 2000m with respective takeoff angles of

0 = 20.28 ¢ = —-30+ (i —1) Mo, dp = 60/9,i =110, was traced. Next we calculate paraxial rays to predict one traced ray

from the previous traced ray. Fig. 4 presents a comparison between the exact rays (solid lines) and the paraxial rays (dots). It can
be observed that the real rays and the paraxial rays are virtually indistinguishable. The corresponding travel timestyji¢ke two

of rays are compared in Table 1. The table shows that the accuracy is greater than one sample, in spite of the fact that the

extrapolated distances of the paraxial ralps, , were around 160m.

Conclusions

We have presented a methodology for three dimensional two point ray tracing based on paraxial rays in cartessian coordinates. This
procedure is both accurate and computationally fast. Use of a cartessian formulation instead of the more common ray centered
coordinates formulation allows more degrees of freedom for the perturbations. Furthermore, adding nonlinearity to account for
varying surface and reflector topography and for normalizing the magnitude of the perturbed slowness extends considerably the
range of validity of the approximation.
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Fig. 2: Shooting configurations
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Fig. 3: Section of the subsurface model

Fig. 4: A comparison between the real rays (solid lines) and the paraxial rays (dots)
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ray dx dy " ray paraxial
time time
[m] [m] [sec] [sec]
1 149.08 | 54.48 0.7650 0.7648
2 150.83 | 55.42 | 0.7704 0.7704
3 150.08 | 55.96 | 0.7826 0.7826
4 153.05 | 57.74 | 0.7959 0.7959
5 156.89 | 58.03 | 0.8125 0.8124
(] 161.46 | 61.87 0.8337 0.8337
7 167.41 | 63.38 | 0.8551 0.8549
8 174.19 | 66.92 | 0.8799 0.8797
9 177.35|68.21 | 0.8973 0.8968

Table 1: Traveltime comparision of the real and paraxial rays
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