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Summary

The velocity and interface depth determination is one of the

most important tasks of exploration seismology. However 

the process of velocity-depth determination suffers from

non-uniqueness of the solution. Traditional methods for 

imposing uniqueness suffer from loss of resolution and

damping of the solution. This work presents an

improvement to travel time tomography by using a wavelet

expansion of the model parameters combined with Cauchy

regularization. By this method we achieve a stable high 

resolution tomography which produces geologically

plausible solutions. The method is tested on synthetic and

field data. 

Introduction

Subsurface geological models are usually parameterized as

a set of velocities of the formations and the depths of the

interfaces separating them. Excluding noise and data 

quality problems, the process of velocity-depth

determination suffers from a spectral ambiguity resulting

from lack of offsets in the data acquisition (Bickel, 1990; 

Bube et al., 1995; Kosloff and Sudman, 2002). Resolving

this spectral ambiguity by improving data acquisition 

requires very large offsets (3 to 20 times the reflector

depth) which are not realistic for exploration geophysics.

This research approaches the spectral ambiguity problem

for reflection travel time tomography inversion (Farra and 

Madariaga, 1988; Kosloff et al., 1996). Traditionally,

damped least squares combined with a coarse update grid, 

have been used to stabilize the solution. However, with this 

approach only very long wavelength features of the model

are resolved, while short wavelength features are lost.

Moreover, the damped inversion can only resolve a small 

part of the travel time error, thus requiring many

tomography iterations to reach convergence. 

This research suggests a new tomographic scheme based on 

a wavelet basis expansion of the solution combined with 

the Cauchy function regularization (Sacchi et al., 1998, 

Zwartjes and Hindriks, 2001). The fact that the wavelet 

transform contains both spatial (shift) and wave number 

(scale) representations of the tomographic updates (Mallat,

1999), allows for flexibilities in regularizing the solution by

applying variances calculated from the background model

(spatial) as well as a priory information regarding wave 

number content and noise. Moreover, wavelet

representation of functions tends to be more compact

(sparse) than their spatial representation. It appears that

sparse solutions, which in our scheme are imposed by the

Cauchy regularization, produce a more geologically

feasible solution. The suggested scheme can be used with a 

fine update mesh with minimal damping to solve short

wavelength phenomena and resolve most of the travel time 

errors.

Model descretization and wavelet transform

The tomography updates two types of parameters, the 

slowness of the formations and the depths of the interfaces

which separate them. The model parameters are discretized

in update points which are separated by the CRP step. Each

update point includes the two parameters of slowness and 

interface depth. For achieving better convergence, the 

model parameters are subsequently transformed from 

slowness and depth to slowness and vertical time 

respectively  (Kosloff et al., 1996).

After spatial descretization and linearization, the 

tomographic equations can be represented as a matrix

product:

tmA (1

Where A is the tomography matrix, m is the model

perturbation vector and t is the travel time error vector.

Each row of the matrix A is of the form:
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Where  symbolize entries in a row of A that 

corresponds to slowness and vertical time parameters, in 

the ith formation, respectively. Similarly the update 

parameters are factored according to
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Let T denote the operator of the wavelet transform.  The 

expansion coefficients
i,~m for a given parameter type

, and formation number i are related to  by
i,

m
ii ,,~ mTm . With this relation the tomography

equation (1) can be rewritten for the expansion coefficients:

tmA ~~
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Where

1,, TAA j

k

j

k . By using this presentation of

the tomography matrix the resulting inverted parameters

will be in the wavelet domain.

The wavelet expansion of the parameters has two main 

advantages.

1.The wavelet coefficients of the model are separated

to both their wave number content and spatial 
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location. This separation allows better 

regularization of the solution by a model variance 

that is generated for both wave number and

location.

2.The wavelet representation of most of the functions

is more compact (sparse) than the spatial one.

Therefore, imposing sparseness of the solution 

may lead to a more geologically feasible solution. 

Regularization by the Cauchy distribution

The Cauchy distribution function is of the functional form:

 (Sacchi et al., 1998,

Zwartjes and Hindriks, 2001), hence the cost function for

the tomography becomes:
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km represent the expansion coefficient of the kth

parameter (e.g. a slowness or vertical time update for a

certain formation and CRP location), M is the number of 

model parameters, C  is the data covariance 

matrix,  are the data and model standard 

deviations respectively, and s is a scaling parameter.
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 is the Cauchy

regularizer. This equation system can be solved iteratively

using the conjugate gradient method. This norm promotes

sparse solutions compared to the standard Gaussian

damped solutions.

Synthetic example

The synthetic survey geometry consists of 512 CMPs with 

a CMP increment of 25 m, and 30 offsets with an offset

increment of 100 m, with a first offset of 100 m. The input 

CRP panels for the tomography were muted at about 1:1 

reflector depth to offset ratio. The initial model includes 

three horizontal layers (Fig. 1, solid lines) with constant 

velocities of 2000 m/s, 2400 m/s and 3000 m/s, for the first 

second and third formation respectively. The “correct”

model was created by applying a small anticlinal 

perturbation to the velocities of the two first formations,

and a constant velocity shift of 80 m/s in the third

formation, while preserving zero-offset times in the depth

model. The input data was generated by CMP modeling 

from the “correct” model. The CMP gathers were 

subsequently migrated using the initial model. The input to 

the tomography included the initial model and CRP panels 

that were created from the migrated gathers (Kosloff et al.,

1996).

Figure 1a compares the “correct” model (solid line) to the 

topographically reconstructed model (dotted line) when 

using Gaussian regularization with a fine update mesh size 

of 4 CRPs. As this Figure shows, especially in the third 

layer, there are locations where the topographically

reconstructed model differs significantly from the correct

model. Figure 1b presents a similar comparison for a

coarser update mesh size of 25 CRPs. The tomographic 

reconstruction in this case is more stable than the one of the 

previous test. However, the small anticlinal features of the 

correct model were not reconstructed properly. Figure 1c 

compares the correct model to the topographically

reconstructed model when using Cauchy regularization in 

the wavelet domain with a fine update grid size of 4 CRPs. 

The tomographic reconstruction in this case is significantly

better than the two previous ones. Short wavelength

features are reconstructed correctly without noticeable 

disturbances in the two first formations, and only a 20 m/s 

error in the third formation.
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Fig. 1: Tomographic results (doted) compared to the “correct”

model. a) Gaussian norm with fine update grid. b) Gaussian norm

with coarse update grid. c) Cauchy regularization with fine update

grid.

Field data example
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The field data geometry consists of 256 CMPs with a CMP 

increment of 25 m, and an average fold of 57 offsets with

an average offset increment of 80 m. The background 

model in this example includes three non-horizontal layers

with laterally variant velocity and laterally invariant 

vertical gradient (Fig. 2 solid line). The vertical gradient 

serves only as a background model and the tomography

updates only the initial velocity and depth. The data was 

migrated using the initial model followed by creation of

CRP panels from the migrated gathers.

Figure 2a shows the depth migrated section using the initial 

model. Figure 2b presents the tomographic results using 

wavelet based tomography with Cauchy regularization and 

a fine update mesh spacing of 4 CRPs (doted line). Figure 

2c shows the CRP panels before and after tomography. As 

figures 2b and 2c show the tomographically reconstructed 

model is stable and the CRP panels are corrected well with

significantly higher semblance values. 

Conclusions

We presented a tomographic scheme which is based on a 

wavelet expansion of the model parameters and Cauchy

regularization. The results show that this method can 

reconstruct short wavelength perturbations better than the 

standard Gaussian damping. This research is important

especially in cases where short wavelengths resolution is

needed. Examples for such cases are locating overpressure

zones or reconstructing small velocity anomalies in shallow 

layers.

SEG Int'l Exposition and 72nd Annual Meeting  *  Salt Lake City, Utah  *  October 6-11, 2002
Downloaded 05 Jun 2012 to 72.20.129.98. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



High resolution travel time tomography 

Fig. 2. (a) Depth migrated section. (b) Tomographic results

(doted) compared to the initial model (solid) using the Cauchy

norm. (c)  CRP panels before and after tomography.
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