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Summary 

 
Curved Rays Tomography updates background anisotropy 
velocity parameters in the time-migrated domain. The 
tomography uses image gathers generated by Anisotropy 
Curved Rays Kirchhoff Time Migration. A locally varying 
1D Vertical Transverse Isotropy (VTI) model is assumed. 
The background anisotropy parameters are the 
instantaneous (interval) vertical compression velocity V  
and the two Thomsen anisotropy parameters δ  and ε . 
Interval velocity (or alternatively δ ) is updated from short 
offsets reflection events, while ε  is updated from the 
available long offset data. Two complementary approaches 
are presented in this study: local and global. In the local 
approach, the medium parameters are updated from top 
down, layer by layer, one parameter at a time. The residual 
anisotropy parameters, that best fit the residual moveout 
curves, are picked. The residual moveout includes 
overburden and current layer components. In the global 
approach, all parameters are inverted simultaneously. Due 
to a large number of offsets, the problem becomes over-
defined, and we solve it by a constrained least-squares 
minimization. The cost function accounts for data and 
model variances, which reflect the reliability of the data 
and control parameter variations, respectively. The updated 
parameters are constrained to a feasible range. 
 
VTI Parameters and their Range 
 
The VTI medium is described by five Thomsen (1986) 
parameters, but to study the compression waves, four 
parameters suffice. Furthermore, the ratio between the 
vertical compression and shear velocity is commonly 

assumed constant, 4/1/ 22 == SVVf . Three parameters 

remain: the vertical compression velocity V  and the two 
Thomsen anisotropy parameters, δ  and ε . The limits for 

δ  depend on the ratio f , ( ) 8/32/1min −=−−= fδ , 

( ) 3/21/2max =−= ffδ  (Tsvankin, 2001). In practice we 

keep this range narrower, 5.02.0 ≤≤− δ . The second 
Thomsen parameter ε  is theoretically limited only from 
below. Since the Poisson ratio is positive, 4/1−>ε . 
Laboratory and field data indicate that the velocity in the 
isotropy plane (horizontal velocity) is usually larger than 
the vertical velocity V . This means that ε  is positive, and 
we accept the range 5.00 ≤≤ ε . The range of the 
anellipticity ( )δδεη 21/)( +−≡  is defined as 

2.005.0 ≤≤− η  and leads to an additional constraint. 
 

Initial and Boundary Value Anisotropic Ray Tracing 
 
Ray tracing is a core element of seismic tomography. In a 
1D medium the horizontal slowness of the ray is constant. 
We distinguish between initial value ray tracing (IVRT) 
and boundary value ray tracing (BVRT). IVRT considers a 
single ray with a given horizontal slowness and vertical 
time at the starting point. The goal of BVRT is to find the 
parameters of a specific ray pair (incident and reflected). 
We assume both rays emerge from the image point and 
arrive to the surface. The vertical time and the orientation 
of the reflection surface are specified at the reflection point, 
and the offset length and azimuth refer to the earth surface. 
 
Initial Value Ray Tracing 
 
In a 1D model, the initial value ray tracing is two-
dimensional. The ray path is a curved line within a single 
vertical plane. Let h  be horizontal coordinate in this plane. 
The vertical coordinate is depth z  or vertical time ot . 

Tracing is done numerically by solving a set of ordinary 
differential equations. The governing function is the 
Hamiltonian, which depends on two components of 
slowness: horizontal, const=hp  , and vertical, zp , and on 

the properties of the medium, which in turn, depend only 
on vertical time ot . The Hamiltonian function follows from 

the Christoffel equation for P-SV waves, 
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The Hamiltonian vanishes at any point along the ray. The 
resolving ray tracing equations are 
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where σ  is an independent integration parameter. The 
traveltime along the ray can be computed using 
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Since we assume const=f , the vertical time derivative in 
equation 3 comprises three terms,  
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Finally, we replace the second equation of set 3 by 
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Boundary Value Ray Tracing 
 
The curved ray path is presented in Figure 1. Points S  and 
R  are source and receiver locations on the earth surface, I  
the image point, U  is the projection of the image point on 
the earth surface, and N  is the intersection of the normal 
line to the reflection surface (that passes through the image 
point I ) with the earth surface. Note that the length 

(offset) and the direction (azimuth) of vector SR  are 
specified and not the specific locations of S  and R . 

 
Figure 1. Boundary value ray tracing 

 
In case of a tilted normal to the reflection surface, the 
planes of incident and reflected paths are different. The 
curved path IS  of the incident ray is in the vertical plane 
ISU , and that of the reflected ray is in another vertical 
plane IRU . Azimuths of these two vertical planes are 
different. At the reflection point I , the incident ray 

velocity SV , the reflected ray velocity RV  and the normal 
IN  to the reflection surface are in the same (non-vertical) 
plane SIR . The inward normal IN  to the reflection surface 
is defined by the dip angle α  and azimuth ϕ . The source-

receiver offset SR  in the horizontal plane is described by 
its absolute value H  and azimuth β . Let Sd  and Rd  be 

lateral shifts of the incident and the reflected ray, 
respectively. They depend on the corresponding horizontal 

slowness R
hp  and S

hp . These shifts result from the initial 

value ray tracing, 
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where Sϕ  and Rϕ  are azimuth angles of shifts Sd  and 

Rd , respectively. Let vector n
r

 be a normal to the 

reflection surface. For a general anisotropic medium, the 
Snell’s reflection law is 

( ) 0=×+ npp RS rrr
           .                     (8) 

Vector equation 8 is equivalent to three scalar equations, 
but only two of them are linearly independent. Thus, we 
have four equations (7 and 8) to establish the horizontal 
slowness and the azimuth angles of the incident and the 
reflected ray. 
 
Residual Traveltime 

 
Perturbations of the VTI properties affect the residual 
traveltime. The perturbed parameters of the medium are 
vertical velocity V  and two Thomsen parameters, ε  and 
δ . Perturbations are assumed small, and the response of 
the medium is linearized. It follows from equation 6 that 
the residual traveltime along the ray is 
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where k  is the layer index. The Hamiltonian vanishes 
along the ray, and its variation is identically zero. The one-
way residual traveltime equation becomes 
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Shift of Reflection Point in Depth 
 
There are two factors that cause variation of traveltime: 
residuals of medium properties and shift of the reflection 
point in depth (Koren et al., 1999). We assume that the zero 
offset traveltime is preserved. The medium properties 
change, and therefore the depth of the reflection point 

varies accordingly. Let zo
mt∆  be the one-way zero offset 

traveltime change caused by the medium properties 
variation only. It can be established by  equation 11 applied 
for the zero offset ray. Let z∆  be the change of depth of 
the reflection point. The variation of traveltime dt∆  caused 

solely by this vertical shift is 

z
RS Pzttt ∆⋅∆=∆+∆=∆ ddd                     (11) 

where zP∆  is the change of vertical “ray slowness”, 

R

R

S

S

z
VV

P
ray

ray

ray

ray coscos αα
+=∆        .                  (12) 

RV  
SV  

H  

N  

U  

I  z  

y  

R  

S  

x  

α  

ϕ  

β  

Sd

Rd

  3374SEG/New Orleans 2006 Annual Meeting
Downloaded 05 Jun 2012 to 72.20.129.98. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Koren, Ravve and Kosloff. Curved Ray Tomography 

 

Conservation of the two-way zero offset traveltime reads 
zo
m

zo
d 2 tt ∆−=∆            .                    (13) 

This yields an explicit expression for variation of depth, 
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where zo
zP∆  is defined in equation 12, for the zero offset 

ray. A similar characteristic iPz∆  can de defined for any 

given nonzero offset. Variation of depth z∆  is the same for 
all offsets. However, the change in traveltime, caused by 
this variation, is different for different offsets i ,                                                               
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Tomographic Coefficients 
 
Introduce the tomographic coefficients 
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After ray tracing is done, δε
kk

V
k AAA ,,  are known values 

along the rays. The two-way residual traveltime reads 
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Equations 16 and 17 express the linearized relation between 
the model parameter perturbations and residual traveltime. 
 
Local Approach: Single Parameter Scanning 
 
Local tomography is a layer stripping approach performed 
for single locations and for a single parameter type m .  
This approach is an interactive “coherency inversion” 
analysis type which is performed directly along the 
migrated image gathers (Koren et al., 1999). It is 
recommended to first select some sparse locations along the 
layer where the residual moveouts are sensitive to the 
model changes. Then the analysis can be performed in a 
batch mode for the whole layer, scanning residual model 
parameters within a specified range. The output is a 
horizon-based semblance plot for a layer, where the 
maximum amplitudes indicate the considered model 
perturbations. The resolving equations are 16 and 17, and 
each time only one of the residuals { }kkkV εδ ∆∆∆ ,,  is 

scanned. The interval velocities (or alternatively δ ) are 

updated using the short-offset reflection events (o30≤ ), 
while ε  is updated using the long-offset data. Steep dips in 
the model contribute considerably to the sensitivity of the 
residual moveouts to changes in parameter ε . This 
approach suffers from general limitations of layer stripping 
methods: the inaccuracies of the parameter estimation in 
the overburden affect the parameters of the current layer. 
 
Figures 2 and 3 demonstrate a simple synthetic example. 
The vertical profile of the true VTI parameters: interval 
velocity, δ and ε , with the corresponding synthetic gather 
(calculated by anisotropy ray tracing) are shown in Figure 
2. In this example, the velocity and δ  are considered 
known and exact, and the goal is to update ε .  
 

 
Figure 2. Synthetic anisotropy model 

 
 

 
Figure 3. Epsilon correction at the third layer: 

true 0.2, background 0.125, residual 0.06 
 
We set the initial guess δε =  at all layers. Anisotropy 
curved ray time migration was performed. The non-flatten 
gathers are shown in the right part of Figure 3.  The figure 
shows the ε  analysis in the third layer. The first and 
second layers have already been inverted. The 
corresponding ε  updates are shown in the vertical and the 
horizon Velocity Panels. An ε  histogram is performed, 
where the optimal residual corresponds to the maximum 
coherency value. The corresponding flatten event is shown 
in the Corrected Panel display. The residual ε  values for 
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the three layers are underestimated (e.g., for the third layer, 
the updated 185.0=ε  as compared to the true value 0.2). 
Another iteration was applied with the corrected values 
which resulted in almost perfect values. 
 
Global Approach 
 
Global tomography for residual parameter update is 
intensively used in depth imaging (Farra and Madariaga, 
1988; Stork, 1992; Kosloff et al., 1996, among others). In 
this section we describe a global inversion procedure for a 
locally varying anisotropy 1D model (time-migrated 
domain). The results of the local tomographic inversion are 
used as a background model for the global tomography. 
The global inversion yields all residuals simultaneously, for 
a fixed lateral location. The reflecting image points 
(elements) are stored as a set of vertical pencils. Each 
pencil is a vertical function, containing information about 
the local reflecting surfaces intersection points with the 
local vertical time axis. Each intersection point contains 
information about its vertical time value, local surface’s 
normal vector (dip and azimuth angles) and the formation 
index above it. In addition, at each point (node) we store 
the traveltime errors (residual time moveouts) related to the 
reflected image point. The residual times are functions of 
offsets or reflection angles with a given shot receiver 
orientation (azimuth) along the earth surface (in marine 
data, the azimuth is the shooting direction). Lateral location 
of pencils may be sparse and irregular. Vertical nodes may 
also be irregular and different for different pencils. Within 
each output interval, the residual parameters m∆  are 
considered constant. The upper and lower interfaces of the 
intervals do not necessarily coincide with the pencil nodes. 
The dimensionality of the problem depends on the amount 

of the output intervals outN  and is independent on the 
amount of the pencil nodes N . Since the problem is over-
determined, the least-squares approach is used. The 

resolving matrix M  consists of outout NN ×   blocks, 
where each block has a dimension of 33×  (three 
parameters m∆ ). The right-side vector B  consists of 

outN  blocks, each of length 3 . The structure of the blocks 
is 
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where h
nN  is the amount of offsets for pencil node n , 

10 out −≤≤ Nkr  and 10 out −≤≤ Nkc  are row index and 

column index, respectively, of a block in the global matrix 

or vector. Superscripts 20 ≤≤ rm  and 20 ≤≤ cm  specify 

the medium property. Factor r

r

m
kinA ,,  is the tomographic 

coefficient of medium property rm  obtained from a ray 

with offset index i  and reflection point n  within the 

output interval rk . Data variance data
,inS  is related to 

reliability of traveltime residual for reflection point n  and 
offset i  (usually all offsets have the same reliability). 

Model variance r

r

m
kS  is related to property rm  on the 

output interval rk , and kδ  is the Kronecker symbol. The 

standard deviation of the model parameter is assumed 
proportional to the interval thickness. Within the thin 
output interval, the information is insufficient, and thus the 
variation of the medium properties on this interval with 
respect to the background model should be limited. 
 
Conclusions 
 
We have described two complementary tomographic 
approaches for VTI parameter determination. The local 
tomography enables a controlled interactive estimation of 
the long-wavelength anisotropy parameters. In the global 
approach we invert simultaneously for all parameters of all 
output intervals using detailed residual moveout 
information. The reliable anisotropy parameters estimated 
by the local approach are used as a background (guiding) 
model for the global one. This makes it possible to further 
apply successfully the global constrained least-squares 
approach. 
 
Acknowledgement 
 
We wish to thank Vladimir Grechka for numerous helpful 
discussions on the range of anisotropic parameters. 
 
References 
 
Farra V., and R. Madariaga, 1988, Nonlinear reflection 
tomography: Geophysical Journal International, 95, 135-
147. 
Koren, Z., U. Zackhem, and D. Kosloff, 1999, 3D local 
tomography – residual interval velocity analysis on a depth 
solid model: 69th Annual International Meeting, SEG, 
Expanded Abstracts, 1255-1258. 
Stork, C., 1992, Reflection tomography for the post-
migrated domain: Geophysics, 57, 680-692. 
Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 
51, 1954-1966. 
Tsvankin, I., 2001, Seismic signatures and analysis of 
reflection data in anisotropic media: Elsevier Science Ltd. 

  3376SEG/New Orleans 2006 Annual Meeting
Downloaded 05 Jun 2012 to 72.20.129.98. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



EDITED REFERENCES
Note: This reference list is a copy-edited version of the reference list submitted by the
author. Reference lists for the 2006 SEG Technical Program Expanded Abstracts have
been copy edited so that references provided with the online metadata for each paper will
achieve a high degree of linking to cited sources that appear on the Web.

REFERENCES
Farra V., and R. Madariaga, 1988, Nonlinear reflection tomography: Geophysical Journal 

International, 95, 135–147.
Koren, Z., U. Zackhem, and D. Kosloff, 1999, 3D local tomography – residual interval 

velocity analysis on a depth solid model: 69th Annual International Meeting, 
SEG, Expanded Abstracts, 1255–1258.

Stork, C., 1992, Reflection tomography for the postmigrated domain: Geophysics, 57, 
680–692.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966.
Tsvankin, I., 2001, Seismic signatures and analysis of reflection data in anisotropic 

media: Elsevier Science Publisging Company, Inc.

  3377SEG/New Orleans 2006 Annual Meeting
Downloaded 05 Jun 2012 to 72.20.129.98. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/


