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Summary 
 
We propose a new method for wave equation depth 
migration which is carried out by depth stepping in the 
space-temporal frequency domain. The propagation of the 
solution is based on a rational expansion of the formal 
solution to the acoustic wave equation. The expansion 
coefficients are calculated by a filter design approach. The 
method is not based on one way wave equations or on 
perturbations to constant velocity solutions to the wave 
equation, but rather it uses the constant density variable 
velocity wave equation as the basis. The method has a good 
steep dip response and can handle strong lateral variations 
in the subsurface velocity.  
The new method is tested against the Sigsbee data set and 
the 3D SEG salt model.  
 
 
Introduction 
 
Most downward-continuation methods for surface recorded 
data are based on some approximation to the variable 
velocity acoustic wave equation.  These approximations 
include use of a one way wave equation, instead of the 
acoustic wave equation, as in finite difference migration, 
use of perturbations to constant velocity solutions as in the 
phase screen methods, or application of spatially variant 
filters which are designed from constant velocity solutions, 
as with explicit operator methods.  When these 
approximations are used in wave equation migration, they 
may limit the ability to handle steep dips or strong lateral 
velocity gradients.  
 
This article presents a new space-frequency domain 
downward continuation method termed the direct solution 
method. This method is quite different from the above 
mentioned approaches in that it uses the exact acoustic 
wave equation for the actual subsurface velocity. In the 
approach, the propagation of the solution from one depth 
level to the next is carried out by a rational expansion of the 
one way evolution operator. As with explicit methods, the 
expansion coefficients are calculated by a filter design 
approach. The solution is generated by applying the wave 
equation operator to the data a number of times for 
obtaining both the positive power terms of the expansion as 
well as the rational terms. The new method has a very good 
steep dip response and handles lateral velocity variability in 
a natural manner.  
In the following sections we first present the theory behind 
the direct solution method. The new method is then tested 

against a number of synthetic examples which have become 
standard in exploration seismology, namely, the Sigsbee 
data set and the SEG salt model. The results of the tests 
show that the direct solution method is capable of 
successfully imaging structures with complicated velocity 
variation.  
 
The Formal Solution 
 
The direct solution method is based on a depth 
extrapolation of the temporarily transformed constant 
density acoustic wave equation which writes,  
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( )p x y z ω, , ,%  denotes the Fourier transform of the 

pressure field ( )p x y z t, , , ,ω  is the temporal frequency, 
x  and y  are the horizontal coordinates, z  is the depth, 

and ( )c x y z, ,  is the velocity.  
The equation may be spatially discretized on a uniform 
mesh ( )x y z, ,  followed by a selection of a second 
derivative approximation to transform the equation into a 
system of ordinary differential equations as follows,  
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0c  is a constant velocity (usually chosen as the minimum 

velocity in each layer), and I  is the identity matrix.  
We assume that within each layer ( z , z dz+ ) the 
velocity is vertically constant. Then the upward 
propagating solution to (2) within a layer can formally be 
written as,  
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Rational expansion of the solution  

The operator D  in (3) contains both positive and negative 
eigenvalues which respectively correspond to propagating 
and evanescent waves. There are very small eigenvalues in 
the transition region between evanescent and non 
evanescent waves. Because of these components, a 
polynomial expansion of the exponential operator in (4) 
would converge very slowly. Consequently we chose a 
rational expansion of the solution given by,  

1

0 0

1( ) ( ) ( )
p nm m

i
i i

i i i

z dz a z b z
β

−

= =

+ = + .
−∑ ∑p D p p

D I
  

(5) 
          

ia , ib  and iβ  are pre calculated coefficients. 1pm +  is 

the number of positive power terms in the expansion, and 

nm  is the number of rational terms. The next section 
explains the procedure for calculation of the coefficients.  
Equation (5) is used for propagating the solution from one 
depth level to the next. Given the pressure field ( )zp , 

DP  , 2D p , .... pmD p  are calculated by recursively 

applying the operator D . The first sum in (5) can then be 
cumulated.  
Each rational term in the second sum is calculated by 
solving a linear equation of the form,  
( ) ( )zβ− = .iD I v p                                              (6) 
    
This calculation can be quite costly and therefore we have 
used only one rational term in the evaluation of (5). In the 
implementation, the Laplacian is calculated by the Fourier 
method and equation (6) is solved by the iterative pre-
conditioned flexible GMRES method. The generation of 
one rational term in (6) required approximately twenty 
applications of the operator D . Typically five positive 
power terms and one rational term are required for 
propagating the solution from one depth level to the next.  
 
Calculation of the expansion coefficients  
 
When 0c  in (3) is chosen as the minimum velocity in the 

layer, the eigenvalues of D  approximately range between 
one and (sometimes large in magnitude) negative values. 
This range can be reduced somewhat by spatial Fourier 
filtering of the wave number components for which 

2 2 2
0k f cω> / , where k  is the wave number, and 

1f >  is a safety factor. The filtered components 

correspond to evanescent waves. As the filter cutoff wave 
number is conservative and is based on the minimum 
velocity in the layer, some evanescent components can 
remain in the solution. However, the expansion coefficients 
are designed to prevent these components from 
exponentially growing out of bounds.  
For a given values of 0dz cα ω= / , the first step of the 
design is to find the coefficients of the rational 
approximation,  
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For a given jx , equation (7) can be recast as a linear 

equation for the coefficients ic  and id  given by,  
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A least squares fit of (8) for values of jx  in the range 

1jxε < ≤  is used for calculating the coefficients ic  and 

id , where ε  is a small positive number. For negative x  
we need to assure stability by requiring that the norm of the 
approximation be less than one. This was achieved by 
adding three negative jx  points in the least squares fit.  

After determination of ic  and id , the values of iβ  in (5) 
can be found by calculating the roots of the denominator of 
(7). In order to assure reasonable convergence of the 
GMRES scheme for solving (6), small iβ  values are 
scaled upwards by multiplication by a positive number 
greater than one. After the determination of iβ , the 

coefficients ia  and ib  in (5) are determined by a second 
least square fit of the equation,  

2
0 1 2

1
1

1 1

p

p

n

n

mi x
m

m
m

e a a x a x a x

b b
x x

α

β β

≈ + + + ...+ +

+ ⋅ + .... + ⋅ .
− −

 (9) 

     
 
Example: The SMAART Sigsbee2a data set  
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The first test of the new migration algorithm was the 2D 
Sigsbee data set without a free surface. The velocity section 
is shown in Fig 1. The data set consisted of 500 shot files 
with a shot spacing of 150 feet. Each shot contained 348 
channels with an offset range between zero and 26025 feet. 
The recording time was 12 sec at a sample rate of 8 msec. 
The CMP spacing was 37.5 feet. The imaging was carried 
out by 2D common shot migration.  
Fig 2 shows a migrated depth section which was obtained 
with the Direct Solution method.  The figure shows that the 
Direct Solution algorithm images the salt boundary and the 
sub salt sediments quite well. 
 
Example: The SEG salt model 
 
The Direct Solution Method is tested against the 3D SEG 
salt model data set. The survey consisted of 389 inlines 
(191-589), and 355 crosslines (80-434).  The inline spacing 
and the crossline spacing was 20m. 
The data set contained 4874 shot files. The number of 
receivers per shot was 134.  The shot spacing in the inline 
direction was 80m, and the shot spacing in the crossline 
direction was 160m.  The receiver spacing in the inline and 
crossline directions was 40m and the number of streamers 
was 8. 
Fig 3 shows the velocity section for inline 360. The 
velocity volume used in the migration was obtained after a 
small degree of smoothing was applied to the original 
velocity volume (in retrospect this smoothing was not 
necessary).  
Fig 4 shows a section of the migrated image along inline 
360. This figure demonstrates that considering the 
difficulties with this data set, the Direct Solution method 
was able to obtain a good image of this model. 
 
Conclusions 
 
We have presented a new migration method which appears 
to have theoretical advantages of current migration 
techniques in that it uses the acoustic wave equation 
directly for the real subsurface velocity. Our experience 
indicates that this method yields slightly better results than 
the Phase Shift plus Correction method with multiple 
background velocities. However in terms of cpu time the 
Direct Solution Method is about three times slower than the 
latter.  It still remains to be seen in which situations this 
extra effort is justified. 
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Figure 1: Sigsbee2a velocity section. 

 

 

 

 

 
 

Figure 2: Sigsbee2a migrated image. 

 

 

 

 

 

 

 
Figure 3: Velocity section at inline 360 of the SEG salt model. 

 

 

 

 

 

 
 

Figure 4: Migrated image at line 360 of the SEG salt model. 
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