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Forward modeling by a Fourier method 

Dan D. Kosloff* and Edip Baysalt 

ABSTRACT 

A Fourier or pseudospectral forward-modeling algorithm 
for solving the two-dimensional acoustic wave equation is 
presented. The method utilizes a spatial numerical grid to 
calculate spatial derivatives by the fast Fourier transform. 
time derivatives which appear in the wave equation are 
calculated by second-order differcncing. The scheme re- 
quires fewer grid points than finite-diffcrcnce methods to 
achieve the same accuracy. It is therefore believed that the 
Fourier method will prove more efficient than finite- 
difference methods. especially when dealing with three- 
dimensional models. 

The Fourier forward-modeling method was tested against 
two problems, a single-layer problem with a known analytic 
solution and a wedge problem which was also tested by 
physical modeling. The numerical results agreed with both 
the analytic and physical model results. Furthermore, the 
numerical model facilitates the explanation of certain events 
on the time section of the physical model which otherwise 
could not easily be taken into account. 

INTRODUCTION 

Forward modeling by construction of synthetic data can be very 
useful in the interpretation of seismic time sections. In this kind of 
work. synthetic data are compared to held results to determine 
how the assumed geologic model of the subsurface needs to be 
modified to obtain better agreement between calculations and 
observations. 

two important techniques which have been used for forward 
modeling are the finite-difference method and the finite-element 
method. Both methods can account for complex geologic struc- 
tures and can handle the elastic wave equation. Their main draw- 
back has been a practical limitation on high-frequency resolution. 
The rule of thumb often used in this context has been that ten grid 
points (elements) are required to resolve a given wavelength 
(Alford et al. 1974). For typical wave velocities and frequency 
bands encountered in exploration seismology. this rule can imply 
grid-point spacings on the order of 3-4 m. It is therefore apparent 
that realistic geologic problems require a very large number of 
grid points, especially in three dimensions (3-D) thus entailing 
prohibitive amounts of computer time

This study examines forward modeling in two dimensions (2-D) 
by the Fourier method or. as it is often called, the pscudospectral 
method (Kreiss and Oliper. 1972; Fomberg. 1975. 1977; Orzag. 
1980; Gazdag. 198 I). This method differs from the finite-difference 
technique in that it uses the fast Fourier transform (FFT) for cal- 
culating spatial derivatives instead of finite differences. The re- 
sulting derivative operators are highly accurate. and our results 
as well as those of others (Fornbcrg. 1975: Gazdag, 1981) in- 
dicate that only two grid points are required to resolve a spatial 
wavelength. Thus. compared to finite differences or finite ele- 
ments, the Fourier method requires a factor of 25 fewer grid 
points in 2-D and 125 fewer in 3-D for achieving the same accu- 
racy. For this reason we believe the Fourier method can con- 
siderably improve forward modeling and. at least in 2-D. enable 
one to model in the full frequency band used in exploration 
geophysics. 

In the following sections we describe the algorithm which was 
constructed for solving the 2-D acoustic wave equation and present 
two examples which shed li_ght on some features of the Fourier 
method and its possible application. 

THE SOLUTION ALGORITHM FOR THE 
ACOUSTIC WAVE EQUATION 

When both density and seismic wave velocity arc spatially vari- 
able, the acoustic wave equation reads 

where P(.Y, T. t) rcprescnts the pressure, p(x-. y) the density. 
C(X, x) the wave velocity, and s(.Y, y, t) the source term which 
equals the divergence of the body force divided by the density. 
In equation (I) and throughout. a dot above a variable denotes 
differentiation with respect to time

The Fourier method solves equation (I) by a discretization in 
both space and time yielding a discrete approximation to equa- 
tion (I) given by 

I 
LP”(i. j) = ~ [P” ’ (i. j) - 2P”(i. ,j) 

GpAt’ 

+ P” ’ (i. ,j)] + S”(i, j). (2) 

where P"(i. j) and .S"(i, j), icspcctively. represent the values of 
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FIG. 1. Normalized phase velocity C/V versus wavenumber K AX 
for the Fourier method for the 1-D homogeneous wave equation 
for different ratios of cx = Vhf/Ax, where V is the velocity of 
propagation. 

pressure and source at time t = n~Ir and at spatial location 
x = x0 + (i - 1) Ax, y = y0 + (j - I)Ay. LP”(i, j) represents 
the numerical approximation of the left-hand side of equation (I 1. 

Equation (2) ontains an explicit, second-order, time-differ- 
encing scheme similar to schemes often used in finite-difference 
and finite-element codes. The point of departure for the Fourier 
method is the manner in which the spatial derivatives are cal- 
culated. 

The term LP”(i. j) in equation (2) is calculated in two separate 
passes, one for the terms containing x-derivatives and one for the 
terms containing v-derivatives. In the pass for the x-derivatives, 
13/3x [( i j pi jdP/dxij is calculated for each of the grid lines which 
parallels t J x-directions (hereafter referred to as .x-lines). Along 
each x-line d P/ax is calculated by first performing a spatial FFT 
on P. The result is then complex multiplied by the spatial wave- 
number vector iK,., v = I , N,, where N., is the numberofgrid 
points in each s-line and i = m. This operation is followed by 
an inverse FFT into the spatial domain yielding dP/ds. In the 
second stage, 8Pld.x is multiplied by the vector I /p, and again a 
forward and inverse FFT are used to get a/a_r[(l/p)(aP/axJ]. 
When the calculation has been completed along all the x-lines, a 
similar process is applied in a second pass to get d/ay[(l/p) 
(dP/dy)] along all the y-lines. 

FEATURES OF THE FOURIER METHOD 

Spatial derivatives constructed by the Fourier method are in- 
finitely accurate for pressures with spatial frequencies in the band 
of the mesh. For a problem in an infinite homogeneous region. 
the Fourier components arc eigenvectors of the wave equation. 
and the temporal frequency of the exact solution will equal the 
frequency band of the source term S(X, y, t). In such a case, 
when the frequency band of the source is appropriately chosen. 
errors in the numerical solution come only from the inaccuracy 
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FIG. 2. Normalized phase velocity versus wavenumber for a 
second-order differencing scheme for the 1 -D homogeneous wave 
equation (after Alford et al. 1973). 

of the finite-difference approximation of the time derivative. 
These errors manifest themselves as numerical dispersion and 
diminish rapidly with a decrease in the size of the time step. 

Figure 1 plots the dispersion relation for the Fourier method 
for the one-dimensional (1 -D) homogeneous wave equation. In 
this plot C is the phase velocity and V is the acoustic wave speed. 
Details of the derivation of the formula on which the plot is based 
are given in the Appendix. The plot shows that at the stability 
limit when (Y = cAt/hx = 2/71, the numerical dispersion is 
large. However, for time steps for which CY < 0.2, the dispersion 
will become small. 

When density or vciocity are hpatiaily vartabk. the frequency 
band of the solution of the w’avc equation may no longer bc equal 
to the frequency band of the source. This is because a multiplica- 
tion by density or velocity in the spatial domain corresponds to a 
convolution in the spatial-frequency domain. therefore not all 
errors in this situation can be attributed to numerical dispersion. 
In spite of this, our cxperiencc indicates that by using time steps 
for which cx < 0.2 at all grid points, and limiting the frequency 
content of the source to the band resolvable by the grid, one ob- 
tains crisp and clear events on ~hc time sections. To be more 
cautious. the first test case which we present compares numerical 
results to analytic results for a sin+ plane interface problem. and 
agreement proves close indeed. 

Figure 2 presents for comparison the dispersion relation for a 
I-D finite-difference scheme used by Alford et al C 1974). The 
figure shows that dispersion at high frequcncieh is always large 
except at the stability limit o( = I. The dashed line corresponds 
to a wavelength of ten grid points which. as stated previously, is 
often considered to bc the shortest wavelength which can be rc- 
solved. At this wavelength the phase velocity is about 2 percent 
less than the acoustic wave speed 

An additional advantage of the Fourier method over the finite- 
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FIG. 3. Model configuration for plane interface example 

difference method is that for a 2-D or 3-D homogeneous medium 
the dispersion is isotropic. Thus a Fourier component of a given 
frequency will travel at the same phase velocity at all angles with 
respect to the grid. This usually is not the case with finite differ- 
ences for which dispersion is often anisotropic at high frequencies 
(Alford et al. 1974). 

INPUT DATA FOR FORWARD MODELING 

In a forward model, the geologic structure and the seismic source 
are assumed known. and the calculations yield the pressure as a 
function of time and space. In the Fourier modeling method. the 
geologic structure is specified through the density and seismic 
wave velocity (or bulk modulus) at the grid points. The method 
allows for both continuous and discontinuous variation of the 
material parameters. 

The source term in equation (2) is usually applied at a single 
point at the top of the grid to imitate a seismic shot. The time de- 

pendence of the source must be carefully chosen in order to limit 
its frequency band to the range which can be resolved by the spatial 
grid. If this is not done, erroneous long-period components can 
enter the solution through aliasing, in a manner which cannot be 
easily remedied by postfiltering. The formula WC adopted for the 
maximum source frequency is derived on the basis that in a plant 
harmonic wave the wavelength A is related to the velocity c and 
frequency S by A = c/f. The criterion which we used for the fre- 
quency content of the source wa’r therefore given by 

where c ,,,ln is the lowest acoustic velocity in the region modeled. and 
AX and A_v are the grid spacings in the s- and y-directions, re- 
spectively. The denominator of equation (3) is equal to the Nyquist 
spatial wavelength in the I- or \,-directions, whichever is larger. 
A similar formula was derived from a different consideration for 
the first-order, one-way equation by Fornberg (1975). 

In constructing the grid for forward modeling. one must choose 
a large enough grid to ensure that important events arrive before 
“wrap-around” events from grit1 boundaries. The considerations 
here arc similar to those encountcrcd in constructing hnite-element 
or finite-difference grids. Wrap-around from the lower boundary 
can be eliminated by specifyin, ~1 a condition of zero pressure at 
the earth’s surface, This. however has the penalty of creating 
ghost events on the records, since the source must bc placed be- 
low the first row of grid points. 

Specification of the grid, the material parameters, and the source 
term completes the input data l’or the forward model. The cal- 
culations yield pressure time histories of all the grid points. which 
can be analyzed later by various graphic displays. 

Example: A plane interface 

The first example compares numerical and analytical solu- 
tions for a problem of a point source above a plane interface be- 
tween two half-spaces with contrasting material properties. The 
model configuration is shown in Figure 3. Since the numerical 
mesh covers only a finite region. the lower half-space was approxi- 
mated by a thick layer (shaded region in Figure 3). For times shorter 
than the reflection time from the bottom of the layer (and of the 
wrap-around reflection from the same interface), the solution of 
this problem should be identical to the solution of the problem of 
two half-spaces in contact. The bottom region of the mesh (un- 

FIG. 4. time section of the top row of the mesh for the plane interface example. Times are given on the right of the figure in seconds. 
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FIG. 5. Comparison of numerical (solid lines) and analytical (dashed lines) pressure histories for the single-layer example for stations on the 
surface at respective distances from the source of 300. 750, and 1200 m. 

shaded arca) had the same material properties as the top half- 
space. Wrap-around to the lower boundary was allowed in this 
example because no zero-pressure boundary conditions were ap- 
plied at the top of the mesh. 

The material properties for this problem w’ere a wave v&city 
of 2000 misec with a density of 2. I g/cm’ for the unshaded region 
in Figure 3. and a velocity of 4000 m/set wjith a density of 2.5 
p/cm’ for the ahadcd rcsion. The source was applied at the right 
upper corner of the mesh at a height of 600 m above the interface. 
It had a triangular time dcpcndence with a half-duration of 20 
msec.’ Most of the frequency content of this source wa5 below 

60 Hz. 
The calculation used 256 x 256 mesh points with a grid spac- 

inp of IS m. The time step was I msec. and the calculation was 
carrtcd out to I .S set or IS00 time steps. The calculation was per- 
formed on the VAX-l I computer at the Seismic Acoustics Labo- 
ratory (SAL) which is equipped with a Floating Point Systems array 
processor. The computations took about three hours (wall-clock 
time). 

The time section for the upper line of the grid is shown in Fig- 
ure 4. The section shows the direct and reflected arrivals. The rc- 
fracted head wave is also present, but it is weak and not easily dis- 
tinguished. The arrivals from the left corner are wrap-around 
events. For interpretation purposes. arrivals in the right half of 
the grid arc usually considered for times shorter than the arrival 
time of the wrap-around events. 

In order to examine the numerical scheme more closely. Fig- 
ures 5,. 5b. and 5c present single trace histories at surface points 

with respective distances of 300. 750. and 1200 m from the 
source. These distances correspond to subcritical. near-critical 
and postcritical reflection angles. The dashed lint in each figure 
gives the analytic solution to the problem based on the Cagniard 
technique (Aki and Richards. 1980). Agreement between numeri- 
cal and analytical solutions appears satisfactory. 

Finally. Figures 6a. 6b. and 6c give the amplitude as a func- 
tion of space at different times. In Figure 6a the cylindrical wave 
has developed but has not reached the layer. Wrap-around from 
the corners of the grid is apparent. Figure 6b gives amplitudes at 
t = 0.4 sec. The wavefront has reached the layer. and the reflected 
and transmitted waves are present. Figure 6c corresponds to a 
later time t = 0.7 see. The refracted head wave is clearly visible 
in this ligurc. 

Example: A buried wedge 

The buried wedge example compares experimental measure- 
ments for a physical model with numerical computations. The 
physical model is a silicone rubber 2-D wedge lying on a flat. level 
Plexiglas plate (Figure 7). The model was submerged in water. 
The length and time dimensions for the experimental measure- 
ments were scaled upward to correspond with typical parameters 
encountered in exploration geophysics. The scaled velocities for 
the materials were (velocity and density. respectively) 4000 misec 
and I g/cm3 for the water, 2300 misec and I I7 g/cm’ for the 
wedge. and 6000 m/set and I, 17 g/cm’ for the plate. The spatial 
dimensions of the model are shown in Figure 7. 
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FIG. 6. Amplitude as a function of space at times (a) 0.2 set, (b) 0.4 set, and (c) 0.7 sec. 

Figure 8 presents a single-fold, zero-offset time section for the 
physical model at a height of 2875 m above the Plexiglas plate, 
and a horizontal range between 2430 and 9170 m. The reflections 
from the sloping sides of the wedge are identified in Figure 8 as 
events A and B. Events C and D are identified as reflections from 
the Plexiglas plate. 

There are, however, a number of features in Figure 8 which are 
more difficult to explain. For example, the origin of event E is not 
clear. Also, event C has a sloping continuation to the left of its 
horizontal portion, whereas event D is truncated and its continua- 
tion appears to occur later as a separate event F. 

In this section we attempt to interpret event F with the aid of 

numerical simulations. For this purpose, two common shot gathers 
are considered with shot locations at 5000 and 7500 m, respec- 
tively. The source wavelet for the simulations was a 4-40 Hz 
zero-phase, band-limited signal with a peak amplitude at 100 msec 
delay. The calculations used a mesh size of 20 m with 512 grid 
points in horizontal dimension and 128 points in vertical dimen- 
sion. In this example, the FFTs in the vertical direction were 
padded with zeroes to 512 points, yielding in effect a zero- 
pressure boundary condition on the earth’s surface. Thus all the 
calculated sections contain a ghost from the reflection of the sur- 
face of the earth. 

Figure 9 presents the calculated common-shot gathers for a shot 
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location at 5000 m. In the figure, event 1 is identified as the 
direct wave, event 2 is the reflection from the side of the wedge 
(event A in Figure g), and event 3 is the reflection off the Plexi- 
glas plate (event C in Figure 8). For comparison, Figure IO pre- 
sents a physical model common shot gather with the same shot 
location. The correspondence between this figure and Figure 9 is 
straightforward. The differences between the figures can be at- 
tributed to slight variations between material parameters of the two 
models. a difference between the 2-D spreading law of the numeri- 
cal simulation and the 3-D spreading law of the physical model, 
and a difference in the waveform and the directivity of the sources 
(the free-surface ghost creates a directivity pattern in the numeri- 
cal simulation, and the physical model source is known to have 
directivity). 

The main interpretive tools of the numerical simulations are the 
plots of amplitude in space at given times (shapshots). Figure I1 
presents amplitude at time I = ,675 set for the shot location at 
5000 m. At this time the cylindrical wave from the source im- 
pinges on the side of the wedge. developing transmitted and re- 
flected waves. Figure 12 shows the amplitude at time t = ,975 
set after the waves have reached the Plexiglas plate. The rc- 
&ted wave from the Plexiglas is continuous across the wedge 
boundary (events 3 and 4. respectively). When this reflection ap- 
proaches the surface at the source location (Figure 13), the re- 
flected front maintains continuity. This explains why event C in 
Figure 8 is continuous. since no break occurs between waves 
which reach the Plexiglas directly from the water and waves 
which reach the Plexiglas through the wedge, 

For the source at 7500 m, the numerical simulation exhibits 

-zm 
FIG. 7. Model contiguration for the wedge example. 

different characteristics of reflection due to the steep dip of the 
left portion of the wedge. Figure 14 presents amplitude at time
f = .975 set soon after the generation of reflections from the 
Plexiglas plate. In this figure the reflection from the Plexiglas 
through water (event D) is separated from the reflection through 
the wedge (event F). In Figure 1 S. event D has arrived at the shot 
location, whereas event F is traveling in the wedge with a wave- 
front approximately perpendicular to the wedge-water boundary. 

The absence of a continuation of event F in the water across 
the wedge boundary is due to the low velocity of the wedge ma- 
terial which causes critical reflection behavior. Event F eventually 
reaches the shot location as a weak corner diffraction (Figure 16). 
The similarity of event F on the single-fold section (Figure 8) to 
the sloping portion of event C is not a coincidence since the two 
events are essentially identical except for the separation of event F 
from event D due to postcritical reflection angles. 

FIG. 8. Zero-offset time section for the physical model. 
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FE. 10. Common-shot gather for the physical model. 

t=.675sec 

FIG. 11. Amplitude at t = ,675 set for shot location at 5000 m 
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RG. 14. Amplitude at t = .97.5 set for shot location at 7500 m. 

FIG. 15. Amplitude at I = 1.5 set for shot location at 7500 m. 

FIG. 16. Amplitude at t = 2.025 set for shot location at 7500 m. 

1411 
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CONCLUSIONS 

A forward modeling scheme has been presented, based on a 
Fourier method. The scheme enables the building of models of 
realistic geologic structures in 2-D and calculating synthetic seis- 
mograms in the frequency band often used in exploration seis- 
mology. As with finite differences and finite elements. the capabil- 
ity of the scheme to produce plots of amplitude in space at speciiied 
time (snapshots) enables easy interpretation of complex events 
on time sections. 

The Fourier method is more complicated than finite differences 
in that computations are not performed locally around each 
element of the grid, but rather along complete lines in the co- 
ordinate directions. On the other hand, the Fourier method re- 
quires fewer grid points than the finite-difference method to achieve 
the same resolution. We believe the savings in computation time
because of the reduction in the number of grid points outweights 
the added number of calculations arising from the complexity of 
the Fourier method. This advantage should become more ap- 
parent in 3-D where the Fourier method requires a factor of 125 
fewer grid points than the finite-difference method to achieve 
equivalent accuracy. 
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APPENDIX 
DISPERSION RELATIONS FOR THE FOURIER METHOD 

(1) 1-D homogeneous case 

When density and bulk modulus are constant, the 1-D acoustic 

wave equation can be written 

d2P I 8’P 
~=-- 
an’ (.Z &’ 1 (A-1) 

where c is the wave velocity. The second time derivative in equa- 
tion (A-l) is approximated by 

pn + I _ ?[“’ + p”-’ i 

Al’ 

where P” = P(s, t = rzAt). 

Assume a solution of equation (A-l ) of the form P’(~’ wr). where 
the wavenumber k is in the band of the numerical mesh. With this 
solution the left-hand side of equation (A- 1) gives -kzef’kr-w”, 
whereas the right-hand side gives -( 1 /c’ A t’) et”’ mWf1 . 
4 sin20 At/2. 

By equating both sides, we get the dispersion relation, 

2 w At 
Tk=---sin-. 

cht 2 
(A-2) 

For equation (A-2) to hold for real w, the time step must satisfy 
the relation 

cAt<f. forall k. (A-3) 

The largest k is at the Nyquist spatial frequency for which k = 

n/Ax with As the grid spacing. A substitution of this value in 
equation (A-3) gives c A t/ Ax < 2/n which defines the stability 
criterion. 

(2) 2-D homogeneous case 

The derivation follows the same steps as in the I-D case. Sub- 
stituting a trial solution e ‘(kl ’ ’ ‘1 ’ -W in the discretized acoustic 
wave equation gives the dispersion relation 

For real o. At must satisfy the inequality 

(A-5) 

At the Nyquist spatial frequencies in x and y and for a uniform 
Ad grid spacing in s and y, X, = n/Ad and k,. = n/Ad. For 
these values we obtain the 2-D stability criterion 

c A t/A<1 < ti/nTT. (A-6) 
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