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A two-way nonreflecting wave equation 

Edip Baysal*, Dan D. KosloffS, and J. W. C. Sherwood§ 

ABSTRACT 

In seismic modeling and in migration it is often desir- 
able to use a wave equation (with varying velocity but 
constant density) which does not produce interlayer re- 
verberations. The conventional approach has been to 
use a one-way wave equation which allows energy to 
propagate in one dominant direction only, typically this 
direction being either upward or downward (Claerbout, 
1972). 

We introduce a two-way wave equation which gives 
highly reduced reflection coefficients for transmission 
across material boundaries. For homogeneous regions 
of space, however, this wave equation becomes identical 
to the full acoustic wave equation. Possible applications 
of this wave equation for forward modeling and for 
migration are illustrated with simple models. 

INTRODUCTION 

Forward modeling and migration often deal with symmetric 
wave propagation in which the raypath from the surface to the 
reflecting horizons is the same as the raypath from the reflec- 
ting horizons back to the surface. In such a situation it is often 
advantageous to model the propagation in only one direction 
along the raypath. In order to reproduce the arrival times 
correctly in such calculations, the material velocity must be 
halved with respect to the actual acoustic velocities in the 
medium (Lowenthal et al, 1976). It is also often desirable to 
eliminate multiple reflections and reverberations and produce 
synthetic sections which contain primary energy only. The 
common approach has been to use one-way equations which 
allow energy to propagate in one direction only (Claerbout, 
1972; Gazdag, 1981). These equations do have thier limitations 
and, in particular, they cannot simulate rays which turn around 
via refraction in the presence of large velocity gradients. 

In this study we derive a two-way wave equation which 
simultaneously permits both upgoing and downgoing propaga- 
tion. For homogeneous regions this wave equation becomes 
identical to the acoustic wave equation. However, in propaga- 
tion from one medium to another this equation gives a zero 
reflection coefficient for normal incidence. 

In the following sections we derive the two-way nonreflecting 
wave equation, and present examples which shed light on its 
features. 

DERIVATION OF THE TWO-WAY 
NONREFLECTING WAVE EQUATION 

For a two-dimensional (2-D) medium with variable velocity 
C(x, z), but with constant density, the acoustic wave equation is 
given by 

a*p a*p i a2p 
ax2+dz2=CZ(X,2F3 (1) 

where P denotes the pressure, and x and z are the Cartesian 
coordinates (Kosloff and Baysal, 1982). Consider next one- 
dimensional (1-D) wave propagation, say in the x direction, 
when the veiocity C is constant. For this type of motion, 
equation (1) can be rewritten symbolically as 

If only the first bracketed term in equation (2) is retained, we 
obtain a one-way wave equation given by 

cp_-p&). 
ax at 

The solutions to equation (3) are given by P =f(x + Ct) with 
fan arbitrary function. This solution gives a wave propagating 
in the negative x direction. In the same manner the second 
bracketed term in equation (2) gives wave propagation in the 
positive x direction. 

When the velocity C in equation (2) is allowed to vary,~ the 
following 1-D wave equation is obtained: 

A generalization of equation (4) to two dimensions gives 

Equation (5) is the two-way nonreflecting wave equation. It 
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FIG. 1. Reflection coefficient as a function of incident angle for the case C, = 2C,. + = acoustic wave equation. - = nonreflecting 
wave equation. 
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FIG. 2. Reflection coefficient as a function of incident angle for the case C, = OX,. + = acoustic wave equation, 
- = nonreflecting wave equation. 
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FIG. 3. Wavefront display comparison between acoustic and nonreflecting wave equations for the plane layer case (C, = 2C,). 
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degenerates into the usual acoustic wave equation (1) whenever 
the velocity C is constant. However, this wave equation does 
not give reflection in the case of normal incidence on a plane 
boundary which separates two dissimilar media; hence the 
term “two-way nonreflecting wave equation.” 

It is interesting to note that for the case of a plane boundary 
between two regions, equation (5) gives small reflection coef- 
ficients for a range of incidence angles. For example, Figure 1 
presents the reflection coefficients as a function of angle for 
propagation from a region of high velocity into a region of low 
velocity, where the velocity ratio has been chosen as 2 : 1. As 
the figure shows, the reflection coefficients remain low for a 
wide range of incidence angles. The opposite case, where the 
propagation is from a low-velocity regkr into a high-velocity 
region, is shown in Figure 2. The incidence angles in this figure 
range between zero and critical. As the figure shows, the reflec- 
tion coefficients remain low for small angles, but increase when 

the critical angle is approached. The numerical results present- 
ed in the next section are consistent with the reflectivity charac- 
teristics depicted in Figures 1 and 2. 

Equation (5) can also be regarded as the full acoustic wave 
equation for a medium with constant impedance. The full equa- 
tion, with the density p and the velocity C given as functions of 
the spatial coordinates, can be written (Kosloff and Baysal, 
1982) 

Now let the impedance pC be constant so that 

PC = K (7) 

and use equation (7) to eliminate p from equation (6). The result 
is equation (5). 

FIG. 4. Wavefront displays of nonreflecting wave equation for plane layer case (C, = 0.5C,). 
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Since equation (5) describes wave propagation in a medium 
in which the impedance remains constant, a wave that crosses 
an interface at normal incidence will have a zero reflection 
coefficient. In general, if the angle of incidence is Or and the 
angle of refraction is 8,) then the reflection coefficient is given 

R = 

L 

P2 C2lcos 02 - P*C,/CO~ 0, 

p2 c,/cos 8, + p,c,/cos 61 1 ’ 

(Aki and Richards, 1980). When the impedance 
p2 C, = p,C, and the equation (8) reduces to 

R= 
cos 8, - cos 0, 

cos 0, + cos 8,. 

EXAMPLES 

(8) 

is constant 

(9) 

In the first example the nonreflecting wave equation is com- 
pared with the full acoustic wave equation. The model consists 

of two materials with a velocity ratio of 2 : 1. A point source is 
located in the high-velocity medium 960 ft above the plane 
interface separating the two media. A grid size of 128 by 128 
was used in the computations where the grid spacing in both 
directions x and z was 40 ft. Amplitude values as a function of 
space for three different times are displayed in Figure 3. The 
“frozen time” sections on the left-hand side of Figure 3 were 
obtained with the nonreflecting wave equation, whereas those 
on the right side resulted from the full acoustic wave equation. 
The comparison clearly shows that the nonreflecting wave 
equation reduces the amplitudes of the reflected wave to almost 
zero and that the transmitted wavefront remains undistorted. 
The results are in qualitative agreement with Figure 1. 

In the second example the model is reversed. The upper 
medium is the low-velocity medium, where the velocity ratio 
between the two media is still 1 : 2. The wavefront displays for 
four different times are presented in Figure 4. The amplitude of 
the reflected wave changes with the incident angle as Figure 2 
suggests. Reflection is greatly reduced for incident angles sub- 

FIG. 5. Superimposed wavefronts for linearly increasing velocity medium. 
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FIG. 6. time section over the fault block model. 

FIG. 7. Wavefront display of the fault block model for t = 0.0 sec. 

Downloaded 06 Jun 2012 to 72.20.129.98. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Two-Way Nonreflectlng Wave Equations 139 

FIG. 8. Wavefront display of the fault block model for t = 0.1 sec. 

1000 

2000 

aft) 

,100o 

FIG. 9. Wavefront display of the fault block model for r = 0.3 sec. 
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FIG. 10. Wavefront display of the fault block model for t = 0.7 sec. 

stantially smaller than the critical angle. Because of the extreme 
velocity rato of 1 : 2, the critical angle is rather small (30 
degrees). 

The next example is a point source in a medium with a linear 
increase in velocity. In order to see the effect of the velocity 
gradient, the wavefront displays for increasing values of time
are superimposed in Figure 5. Theoretically the wavefronts 
should be circular, with the center of the circles moving verti- 
cally downward in space as traveltime advances (Slotnick, 
1959). The results in Figure 5 are completely consistent with the 
theoretical expectations. 

Finally, a zero source-receiver offset seismic section is simu- 
lated over a structural model using the “exploding reflector” 
concept introduced by Loewenthal et al (1976). The model 
consists of a fault block with a constant velocity of 3000 ft/sec, 
the fault plane having a steep dip of 80 degrees (see Figure 7). 
The medium to the right of the fault block has a large vertical 
velocity gradient. The velocity of this medium starts with 4000 
ft/sec at the surface and increases linearly with depth with a 
gradient of 4 ft/sec per foot. If a one-way equation is used in the 
modeling; then- it is impossible to simuiate the surface arrivai~ 
due to the wavefront generated at the fault plane, which starts 
traveling downward, then turns around via refraction due to 
the velocity gradient, and arrives at the surface stations that are 
not located directly above the fault block. It is possible to 
model these raypaths with equation (I), but this will also gener- 
ate events such as reverberations or multiples between the 
horizontal upper boundary of the fault block and the free 
surface. The nonreflecting wave equation [equation (5)] will 
correctly model the raypaths which turn around because of the 
velocity gradient and then arrive at the surface, whereas it also 
will greatly reduce the amplitudes of the undesirable secondary 

events. Figure 6 presents the resulting seismic section over this 
model using the nonreflecting wave equation. The reflections 
from the horizontal upper boundary of the fault block and the 
reflections from the fault plane by curved raypaths are connec- 
ted by the diffractions caused by the corner of the fault block. 

The next set of figures shows the amplitude displays as a 
function of space at different times. Figure 7 is at time t = 0 set 
and therefore it represents the initial pressure field (in this 
model the sources located at the material interfaces were as- 
signed a strength of unity). Figures 8, 9, and IO are the wave- 
front displays at corresponding times oft = 0.1,0.3,0.7 sec. It is 
possible to observe the change of direction of the wavefront 
which started at the fault plane. It starts out traveling down- 
ward; in Figure 8 the wavefront is turned around and is almost 
vertical, then it continues to turn around and travels upward in 
Figures 9 and 10. The fault plane also emits another wave 
which travels slightly upward in the low-velocity fault block, 
and it hits the upper horizontal boundary of the fault block 
with an incident angle larger then the critical angle. Therefore 
no transmission occurs at this interface, and the surface stations 
above the ftiult block cannot record anything caused by the 
fault plane (Figure 7). The waves associated with the upper 
horizontal boundary of the fault block provide some interesting 
features. This boundary emits both an upward and a downward 
traveling wave. The upward traveling wave arrives at the sur- 
face (Figure 8) where it is reflected back by the free surface 
(Kosloff and Baysal, 1982). In Figures 9 and 10 the original 
downgoing wave emitted by the horizontal boundary of the 
fault block and the free-surface reflected wave following it with 
reverse polarity are obvious. Note that the reflections from the 
upper boundary of the fault block are eliminated due to the use 
of the nonreflecting wave equation. 
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FIG. 11. Migrated depth section for the time section shown in Figure 6, using the nonreflecting wave equation and reverse time
migration. 

“REVERSE TIME” DEPTH MIGRATION 
USING THE NONREFLECTING WAVE EQUATION 

Because multiple reflections are suppressed when multifold 
data are stacked, it seems appropriate to migrate a stacked 
section using an equation which does not generate multiples. 
One-way wave equations have been used for this purpose, and 
they work well provided the wavefronts we wish to follow do 
not exceed appropriate steep dip limitations. Using the nonre- 
fleeting wave equation in place of the one-way wave equation 
avoids this restriction and at the same time retains the advan- 
tage of suppressing multiples. 

The example of depth migration given here illustrates the 
ability of the nonreflecting wave equation to migrate a stacked 
section when the velocity distribution has a large vertical gradi- 
ent. The synthetic time section shown in Figure 6 was used for 
the demonstration. 

The imaging principle inherent in the migration of stacked 
sections permits a different approach to migration based on 
reverse time marching instead of depth extrapolation. The 
stacked section is considered as a surface boundary condition 
for a reverse operation to the modeling type wave calculations 
that step forward in time Commencing with zeroes for the 
spatial pressure field and its time derivative, the calculations 
are carried out in reversed time from the time of the last sample 
on the time section until time zero when the amplitudes in all 
space are considered as the final migrated section. If the veloci- 
ties for the migration are chosen correctly, the wave field at 
time zero should be coincident with the reflecting horizons in 
the medium. 

The result of applying this algorithm to the data shown in 
Figure 6 is the depth section shown in Figure 11. The overhang- 

ing fault block has imaged, the success of the method being tied 

to our knowledge of the velocity distribution. 

CQNCLUSIONS 

We have presented a two-way wave equation which signifi- 
cantly reduces reflections from material interfaces. This equa- 
tion can be useful in forward modeling or reverse-time depth 
migration when there is a need to avoid interlayer reverber- 
ations. It offers improvements over modeling or migration with 
one-way equations for structures with strong velocity contrasts 
or gradients where geometrical rays can turn around. In such 
situations, the two-way nonreflecting wave equation can follow 
the ray beyond the turning point. 
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