
DISCUSSION

On: "Accurate depth migration by a generalized phase-shift method" by Dan Kosloff and David
Kessler (GEOPHYSICS 52, 1074-1084, August 1987).

I would like to point out that the "generalized phase-shift
method" (Kosloff and Kessler, 1987) introduced for solution con­
tinuation - and referred to as a new method - is essentially
identical to the "generalized Haskell matrix/layer eigenstate
propagator (GHM/LEP)" method I presented earlier (Pai,
1985). Unfortunately, Kosloff and Kessler did not reference that
paper.

To facilitate discussion, I first summarize the GHM/LEP
method. In the method, an arbitrarily varying medium is treated
as a stack of laterally inhomogeneous but vertically homoge­
neous layers. Within a layer, the wave equation is decoupled to
an eigenvalue equation in x (the horizontal coordinate) defining
a set of orthogonal eigenstates [see equations (4) and (5)] and
a waveequation in z (the vertical coordinate) showing the eigen­
states as upgoing or downgoing waves [see equations (6) and
(7)]. In this way, the solution within each layer is a summation
of 2N modes: N upgoing and N downgoing eigenstates. A solu­
tion propagator - a 2N x 2N matrix - is constructed for
solution continuation from one depth to another. The solution
propagator is in terms of layer propagators, which are diagonal
matrices describing mode propagation within layers as shown
in equation (8), and interface propagators, which are nondiag­
onal matrices describing mode couplings at layer interfaces as
shown in equations (10) to (14). The solution propagator can
be used in a number of ways. For modeling, the solution propa­
gator is used to construct the response to excitations, source or
incident waveexcitations, subject to the required boundary con­
ditions - see equations (15), (21), and (22). For migration, the
solution propagator can be used for surface data downward con­
tinuation. The GHM/LEP method is a solution method for field
equations in general, not at all restricted to waveequations; the
latest application has been to the diffusion equation in borehole
electromagnetics (Pai and Huang, 1988).

The name "layer eigenstate propagator" is descriptive of the
method itself. The name "generalized Haskell matrix" comes
from the fact that when the medium is laterally homogeneous,
all layers have the same set of eigenstates - namely, ei kx (or
k waves) - and the 2N x 2N solution propagator is decoupled
to N separate 2 x 2 matrices (one 2 x 2 matrix per k wave)
which are just the well-known Haskell propagator matrices.

As summarized in the following, except for a few trivial vari­
ations, Kosloff and Kessler's derivation on generalizing the
phase-shift method through eigenstate expansion [equations (1)
to (17)] is essentially identical to the GHM/LEP method:

1) As in my paper, Kosloff and Kessler treat the medium as a
stack of laterally inhomogeneous but vertically homogeneous
layers,as indicated by the sentence just before their equation (7).

2) As in my paper, Kosloff and Kessler define a set of eigen­
states in terms of an eigenvalue equation in x, In defining
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eigenstates, their equation (8) is equivalent to my equation (4),
other than two trivial variations. First, my matrix defining eigen­
states is N x N[equation (4) in my paper], whereas their matrix
is 2N x 2N [equation (8) in their paper], since they deal with
P and oP/oz (their nomenclature) simultaneously. Their choice
is unnecessarily complicated: the actual dimensionality is only
N, since the same eigenstates can span P as well as OP/ oz as
indicated by their own expression of eigenvectors, each of which
consists of two identical N-dimensional vectors [see the expres­
sion following equation (7) in their paper]. Second, in defining
eigenstates, I went from the x-space to the k-space and then to
the eigenspace in order to show that the k-space happens to
be the eigenspace when the medium is laterally homogeneous
(thus showing the generalization of the Haskell matrix method),
whereas they went directly from the x-space to the eigenspace
[and subsequently needed an extra page - equations (13) to (17)
- to show the connection to the k-space]. Because of these two
variations, their equation (8) may look different from my equa­
tion (4), but the two equations are in fact equivalent.

3) As in my paper, Kosloff and Kessler transform their solution
into the eigenstate, up-and-down wave representation [equation
(11) in their paper, with Q-1 as the transformation matrix] to
obtain the diagonal propagator matrix [equation (12) in their
paper]. Their Q-1 is my ~ in equation (5) combined with my
equation (9) relating the up-and-down wave representation to
the 'Ir, o'lr / oz (my nomenclature) representation. Incidentally,
half of g-1 in their equation (10) is missing.

4) Kosloff and Kessler's final result (the part on generalization
through eigenstate expansion), equations (11)and (12) showing
the diagonal propagator of the eigenstate modes within a layer,
is just my equation (8) defining the layer propagator. The ele­
ments of this diagonal matrix are all phase-shift factors just like
those of the ordinary phase-shift method. This result establishes
connections with and generalizes the ordinary phase-shift method.

In summary, Kosloff and Kessler'sgeneralization of the phase­
shift method through eigenstate expansion is identical to the
GHM/LEP method I gave earlier, namely: the horizontal­
vertical decoupling oj the wave equation through a solution
expansion in terms oj generalized eigenstates and subsequent
constructions ojpropagators in terms of these eigenstates for
solution continuation.
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Response byD. M. Pai to the Reply bythe authors

of our article can be omitted without seriously affecting the
readability.

In summary, we do not see a similarity between the method
in our article and the methods suggested in Pai's work.

DAN KOSLOFF
DAVID KESSLER

Tel Aviv University
Dept. of Geophysics

Planetary Sciences
Ramat Aviv Tel Aviv

Israel 69978

In consideration of the authors' reply, I must clarify the fol­
lowing: This discussion is solely concerned with pointing out
that the eigenstate expansion method in the first 4 pages of their
paper [the material encompassing equations (I) to (17)] is essen­
tially identical to my GHM/LEP method; this discussion is not
at all concerned with the Chebychev expansion method in the
latter part of their paper [the material following equation (18)],
nor is this discussion concerned with advocating one method
over another. Thus the authors' reply that their method is the
Chebychev series expansion method with no similarity to the
GHM/LEP method does not wholly bear on the discussion. In
regard to their reply that the eigenstate expansion method serves
merely as background material with little bearing on the central
theme of their paper, I would like to point out the following:
In their paper, Kosloff and Kesslerpresented the eigenstate expan­
sion method and named it (and the title of their paper) the
generalized phase-shift method [see the major heading "the
generalized phase-shift method" encompassing the material
from equation (I) to (12); see also, for example, the paragraph
just above that heading on describing what they meant by the
generalized phase-shift method]. Thus the eigenstate expansion
method was in fact the foundation behind the title of their whole
paper. Because of the prominence and significance attached to
the eigenstate expansion method in their paper, I deem it neces­
sary to trace the method to an earlier paper.

(2)

(I)

Ad.
V.+ d• = e: V.,

We regret not having referenced the work of Pai (1985), but
we disagree completely with the contents of his discussion.
Briefly summarized, the downward continuation in our article
includes the following steps:

A) Write the governing equations as a system of first-order
ordinary differential equations in depth of the form

dV
-d = AV,z -

where V represents the quantities to be downward-continued
(pressure and vertical pressure derivatives in the case of full
acoustic migration), and ~ is a spatial operator.

B) Write the formal solution to equation (1) as

where dz is the depth increment. This equation in our opinion
defines the generalized phase shift method.

e) Expand the formal solution by the Chebychev series

V.+d. = ~ c, Jk(R) r,(A:Z) v. , (3)

where Ck = 1 and C« = 2 for k * O,Jk are Bessel functions,
and Tk are modified vector Chebychev polynomials. R is a num­
ber larger than the largest of the eigenvalues of Adz.

Our migration technique is not based on an eigenfunction
expansion. We believe that methods based on such expansions
(like Pai's suggestion) would be prohibitively expensive. Morever,
the whole purpose of our article is to show how to avoid this
operation while maintaining high accuracy. The eigenfunction
expansion option was brought up as background material to
show the relation with the ordinary phase-shift method in the
case of horizontally uniform structures, as well as to discuss the
role of evanescent energy. In fact, as an Associate Editor of
GEOPHYSICS suggested, a large portion of the first 4 pages
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