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Accurate depth migration by a generalized phase-shift method 

Dan Kosloff” and David Kessler* 

ABSTRACT 

A new depth migration method derived in the space- 
frequency domain is based on a generalized phase-shift 
method for the downward continuation of surface data. 
For a laterally variable velocity structure, the Fourier 
spatial components are no longer eigenvectors of the 
wave equation, and therefore a rigorous application of 
the phase-shift method would seem to require finding 
the eigenvectors by a matrix diagonalization at every 
depth step. However, a recently derived expansion tech- 
nique enables phase-shift accuracy to be obtained with- 
out resorting to a costly matrix diagonalization. The 
new technique is applied to the migration of zero-offset 
time sections. As with the laterally uniform velocity 
case, the evanescent components of the solution need to 
be isolated and eliminated, in this case by the appli- 
cation of a spatially variant high-cut filter. Tests per- 
formed on the new method show that it is more accu- 
rate and efficient than standard integration techniques 
such as the Runge-Kutta method or the Taylor method. 

INTRODUCTION 

4 basic part of seismic migration is the downward continu- 
ation of surface data to the subsurface. This downward con- 
tinuation is carried out with some form of solution of a gov- 
erning wave equation. In order to preserve the fidelity of the 
seismic data, it is desirable to have the downward continu- 
ation as accurate as possible. Gazdag (1978) and Bolondi et al. 
(1978) introduced the phase-shift method which yields com- 
plete accuracy for laterally uniform structures. However, when 
the velocity structure is laterally varying, all reported methods 
give only approximate results. They are not exact because 
they are either based on approximate solutions to the wave 
equation for the medium under consideration, or because they 

rely on discrete numerical-solution techniques such as finite 
differences (Claerbout and Doherty, 1972; Loewenthal et al., 
1976). 

This paper shows how the phase-shift method can be gener- 
alized to arbitrary velocity structures. The resulting technique 
at first appears cumbersome because it requires a matrix diag- 
onalization in every depth step. However, Tal-Ezer (1984, 
1986) and Tal-Ezer et al. (1986) indicate how the solution can 
be obtained accurately without resorting to the matrix diago- 
nalization. The application of Tal-Ezer’s method to depth 
migration results in a technique which is both accurate and 
efficient compared to methods based on a numerical solution 
of the wave ‘equation. The new scheme is demonstrated for 
poststack migration. 

In the next section, the generalized phase-shift method for 
an arbitrary velocity structure is derived. It is subsequently 
shown that for a laterally uniform velocity model the method 
degenerates into the ordinary phase-shift method as in 
Gazdag (1978) and Bolondi et al. (1978). Next we describe the 
implementation of the generalized phase-shift method with 
Tal-Ezer’s solution technique. The resulting algorithm is 
tested for poststack migration of a synthetic time section 
obtained from a model with heterogeneous velocities. 

THE GENERALIZED PHASE-SHIFT METHOD 

The generalized phase-shift method is based on the solution 
of the temporally transformed acoustic wave equation 

a2P wz _ a’p” 
-= 
8Z2 

-p 
_- 

ax2 ’ 
(1) 

where x and z, respectively, denote horizontal and vertical 
Cartesian coordinates, P”(x, Z, w) denotes the temporal trans- 
form of the pressure field, o is the frequency, and c(x, z) is the 
velocity field (Kosloff and Baysal, 1983). As in Kosloff and 
Baysal (1983) it is convenient to recast equation (1) as a set of 
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two first-order coupled equations given by 
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The downward continuation in the migration consists of the 
solution (2) for each frequency at all depths under the initial 
conditions of the values of P” and dp/dz at the earth’s surface 
z = 0 (Kosloff and Baysal, 1983). 

Since seismic data consist of time histories at discrete points 
on the earth’s surface, the solution of equation (2) must in- 
clude a discretization in the horizontal coordinate. With N, 
denoting the number of seismic traces and dx the trace spac- 
ing, equation (2) transforms into a set of 2N, coupled ordinary 
differential equations in the variables p(idx, z, w) and 
f3P/dz(idx, z, o), i = 0, . , N, - 1. The horizontal dis- 
cretization requires an approximation for the derivative term 
in equation (2). Whether this derivative is calculated by the 
Fourier method as with the ordinary phase-shift method 
(Gazdag, 1978), or by finite differences with periodic horizon- 
tal boundary conditions, it can be written as the cyclic convo- 
lution 

a2P N, 

2 (‘d I x, z, co) = c F(jdx, z, w)kVmj, 
j=O 

where & denotes a convolutional operator (for nonperiodic 
boundary conditions, the convolution becomes noncyclic). For 
example, for second-order finite differences, W, = -2/d.? and 
W_ 1 = W, = I/dx= , and W, = 0 for (i 1 2 2. For the Fourier 
second-derivative operator, 

and (4) 
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with N, = 2L + 1 (see the Appendix). In most reported appli- 
cations, the derivative has been calculated with the fast Fou- 
rier transform (FFT) (Gazdag, 1978; Stolt, 1978; Gazdag, 
1980; Kosloff and Baysal, 1983); however, a direct application 
of equation (4) gives identical results. Computational effkiency 
determines which approach is used in the calculations. 

With the spatial discretization and specification of the 
second-derivative approximation, equation (2) can be recast as 

denotes a column vector of length 2N, containing first the N, 
pressures P(idx, z, co) and then the N, pressure derivatives 
d&!az(idx, z, w), i = 0, ., N, - 1. The 2N, by 2N, matrix A 
can be partitioned according to 

where INX denotes the N, by N, identity matrix, and the ele- 
ments of the N, by N, symmetric submatrix A,, are given by 

_ _ 

1 I A 21 = 

I 

WNx - 1 

_-WI q= - w, 
C2 

-TN,-2 (6) 

In equation (6), ci is a shorthand notation for c(idx, z), and we 
used the periodicity of the coefficients w given by W_, = 

W N,_i’ As with the ordinary phase-shift method, the solution 
here is propagated in depth increments. Within each in- 
crement z to z + dq the velocity is assumed to be invariant in 
the vertical direction although it may vary horizontally. The 
solution of equation (5) can then be written as 

121 ._+dz =exp [Ad=1 [g]; t7) 

We now show that solution (7), excluding evanescent com- 
ponents, embodies a phase shift of eigenvector coefficients of 
A. For periodic boundary conditions and a symmetric second- 
derivative operator, the NX by N, submatrix A,, in equation 
(6) is symmetric. Its eigenvalues are therefore real. We denote 
these eigenvaiues by i;,, X,. , ii,,,_, Andy the corresponding 
normalized and mutually orthogonal eigenvectors by V,, V,, 

_._, VNT ,. For simplicity. we assume that all the eigenvalues 
are nonzero (which is usually the case in actual calculations); 
however, the derivations can be modified to account for zero 
eigenvalues as well. Given the eigenvalues and eigenvectors of 
A =,, it can be verified by substitution that the 2N, eigenvalues 
of matrix A are given by + ,,/c. i = 0,. , N, - 1. The corre- 
sponding eigenvectors are given by 

[-J&l .., ~-&,_,I- 
(5) 

With these eigenvectors we define a 2N, by 2N, matrix Q in 
which the columns consist of the eigenvectors of A. We &en 
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have the relation 

where Q is the diagonal matrix 

and 

Q-‘AQ = Q, 

v” _ 1 N, 

(8) 

(9) 

-G 

(10) 

When both sides of equation (7) are multiplied by Q from the 
left, we obtain [using equations (8), (9), and (IO)], - 

The entries of the diagonal matrix exp [A dz] are given by 

4, given by &,J’<, i = 0, . ., N, - 1, are either purely real or 
purely imaginary depending upon the sign of hi. When an 
eigenvalue +_ ,/h, is imaginary. the corresponding coefficient 
is propagated in equation (11) by a phase shift. Conversely, 
when +& is real, the component is propagated by a multi- 
plication by a real exponential. As with the ordinary phase- 
shift method, the components in this case span the evanescent 
part of the solution. For numerical stability (as discussed 
later), die cvan~5sccnt components need to be eiiminated from 
the solution. 

SOLUTION FOR HORIZONTALLY UNIFORM 

STRUCTURES 

In this section we show that with the Fourier second- 
derivative approximation and for horizontally uniform struc- 
tures, the phase-shift relation (11) degenerates into a variant of 
the ordinary phase-shift method described in Gazdag (1978). 

Denote the uniform velocity in a strip between z and z + dz 

by co. The elements of the submatrix A,, in equation (6) are 
now 

L A 21 1 i,j = 0 1 - . ..1 N, 1, (13) 
ij 

where & is given by equation (4). For the Fourier method 
second-derivative approximation, the eigenvalues and eigen- 
vectors of equation 13) can be calculated. From the Appen- 
dix, the values l/ ;I N, (e iKLjdx), v = 0, . , N, - 1 [or equiva- 
lently, cos (K,jdx) and sin (K,jdx) if one wishes to deal with 
real eigenvectors] represent the components of the vth eigen- 

1 

0 

The phase-shift character of the downward extrapolation now vector of the operator W. By equation (13), they also represent 
becomes apparent. The vectors the components of the vth eigenvector of A,,. K, is given by 

Q-’ [iJ and Q-fii];., 

give the coefficients of the eigenvector expansion of 

[g]= and [gg+,;> 

respectively. In the propagation of the solution from depth z 
to depth z + dz, the components are multiplied accordm to 
equations (11) and (12) by exp (&dz) or exp (- hi dz), j” 
i = 0, ., N, - 1, respectively. The 2N, eigenvalues of matrix 

2n 

Gdx 
for v = 0, ,$ - 1 

K, = 

-&(NX-v) for v=+,...,N,-1 
(14) 

x 

The corresponding eigenvalues are given by 

The entries of the N, by N, matrix y , composed from the 
eigenvectors of [Aal], are then given by 

j,r=O ,.,., N,-1. 

This matrix is exactly the discrete Fourier transform (DFT) 
matrix (e.g., Bracewell, 1978). When it operates on a vector, 
the result is the discrete spatial Fourier transform of that 
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vector. The matrix Q of equation (10) then becomes 

where 

v,*, ... 

vy, “. 

‘* 
N,-10 ... 

If,*, ” 

v:, “’ 

:,-lo “’ 

“,*.*-1 
-iw 
- “63 .- 

co 
“:A+, -iq,vy, “’ 

Vi,-IN,-1 --iq,~_,v~~_,, ‘.’ 

- 
ap” - 

F. + iqo --gf 

aP _ 
FN,,-, + iqN,--l * 

a 

PO - ino z 

(16) 

7 = 0, . , N, - 1 

With this result, the propagated solution (11) now becomes 

and 

where P” denotes the spatial Fourier transform of p, 

6(r, z, co) = h ~~~&Lx, z, w) exp [ - i k nv 
I 

. 

It is now clear that equation (17) is a variant of the ordinary 
phase-shift method of Gazdag (1978) and Bolondi et al. (1978). 
V$ith the z zooordinate increasing downward, the components 
P, + (iq,)(dP,ldz), v = Oh . , N, - 1, correspond to upgoing 
waves, and P, - (iq,)(dP/dz), v = 0, . . , N,_ 1 correspond to 
downgoing waves. As pointed out in Kosloff and Baysal 
(1983), this variant of the phase-shift method assures the conti- 
nuity of both P” and a?/7dz across horizontal interfaces. This is 
unlike the phase-shift migration method in Gazdag (1978) 
which includes only upgoing energy and does not assure the 
continuity of aF/dz. From a practical viewpoint, however, it is 
doubtful whether assuring the continuity of ap]jdz lends any 
advantages to poststack migration. The exploding-reflector 
concept on which the migration is based includes only upgo- 
ing energy (Loewenthal et al., 1976) and therefore does not 
account accurately for amplitudes. 

SOLUTION FOR ARBITRARY VELOCITY STRUCTURES 

When the velocity structure varies arbitrarily in the lateral 
direction, the eigenvalues and eigenvectors of matrix & can no 

iw 
- “o*.v,-1 
co 

2n 
-iFkd x 1 

_ 

plo Gl 

1 L 

(17) 

longer be obtained by inspection. It would therefore seem that 
a matrix diagonalization would have to be performed before 
each propagation according to equation (11). However, recent 
work by TallEzer (1984, 1986) and TallEzer et al. (1986) indi- 
cates how the generalized phase-shift method can be effected 
without having to resort to expensive matrix diagonalizations. 
This section describes the implementation of Tal-Ezer’s 
method tc depth migration. A mere detailed discussion of the 
solution technique can be found in Tal-Ezer (1984, 1986) and 
Tal-Ezer et al. (1986). 

The solution is based on a Chebychev expansion of the 
generalized phase-shift method before matrix diagonalization 
(7). The expansion is derived from the scalar expansion for the 
function eX given by 

ex = f C, Jk(R)Qk lxl<R (18) 
!i=O 

(e.g., Hamming, 1973). J, denotes the &h-order Bessel func- 
tion, Qk denote Chebychev polynomials, Co = 1 and C, = 2 
for k > 0, and x is real (or at least in sufficient proximity to 
the real axis). When x is imaginary (or sufficiently close to the 
imaginary axis), the above expansion is replaced by the series 

ex= ;C,J,(R)T, 1x1 <R, (19) 
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where the polynomials Tk (x) satisfy the recurrence relations 

T,(x) = 1, 

T,(x) = x, 

and (20) 

Tk+ ,(x) = Tk- 1(x) + ZxT,(x) 

(Tal-Ezer, 1984, 1986). By analogy with equation (19), the ex- 

ponent in equation (7) is expanded according to 

P 

[I aP 
(21) 

z 
Z’ 

This expansion is valid when the eigenvalues of [Adz] are 
purely imaginary. As discussed in the next section, this re- 

quires elimination of the evanescent components from the 
solution. Also, R must be chosen large enough to span the 

range of the eigenvalues of [Adz]. It was shown in Tal-Ezer 
(1984) that for k > R, the series expansion converges exponen- 
tially. The number of terms required in the sum in equation 
(21) will therefore always be finite. 

Equation (21) serves as the basis for implementing the gen- 
eralized phase-shift migration. First the range R of the eigen- 
values of [Adz] needs to be estimated (but not necessarily 
evaluated exactly). Based on the case of laterally uniform ve- 
locity, we have found the estimate R = ~dz/c,,,~~, with c,,,in 
denoting the lowest velocity in the strip (z, z + dz), sufficient 

for stable results. The Bessel functions J,(R) are computed 
next. The solution 

is then calculated recursively according to the following: 

(a) Given 

and 

generate the next polynomial by the formula 

(b) add another term to the sum in equation (21). 

The first two values of To, T, needed to initialize the recursion 

are given by 

and 

(Tal-Ezer, 1984, 1986). Steps (a) and (b) are repeated until a 
sufficient number of terms have been calculated in the sum 
(21). Then the solution is carried out in the next lower level. 
When P(x, Z, o) has been calculated completely, the final mi- 
grated section is cumulated by 

Pmin(X, z) = 1 p’(x, Z, 0) 
0 

(Kosloff and Baysal, 1983). 

ELIMINATION OF EVANESCENT ENERGY 

The real eigenvectors of the solution to the wave equation 
(2) correspond to evanescent components. These are non- 
sinusoidal inhomogeneous waves. They can be generated, for 
instance, when crossing velocity interfaces at angles beyond 
the critical angle, or from seismic sources that generate spheri- 
cal waves (Aki and Richards, 1980). Since evanescent compo- 
nents decay exponentially with distance, the information con- 
tained in them is usually lost and they therefore cannot be 
used in seismic imaging. The evanescent components can lead 
to numerical instability in the form of exponential growth of 
rounding errors. Consequently, depth migration based on 
depth extrapolation with the full acoustic wave equation re- 
quires the elimination of the evanescent energy (Kosloff and 
Baysal, 1983). 

Figure 1 shows the location of the eigenvalues of matrix A 
of equation (7) in the complex plane. In an ideal solution, 
evanescent components corresponding to the real eigenvalues 
would be eliminated, whereas components corresponding to 
the imaginary eigenvalues would be unaltered. Unfortunately, 
in the general case this requires the separation of the evanes- 
cent components through a costly matrix diagonalization. A 
method for eliminating the evanescent components without 
the matrix diagonalization and without severely affecting the 
nonevanescent components is therefore required. 

A scheme proposed in Kosloff and Baysal (1983) included 
use of the Fourier method and elimination of all the Fourier 
components whose wavenumbers satisfy K, > w/c,,,, where 
c,,, denotes the highest velocity in the depth increment be- 
tween z and z + dz. Although this scheme has proven stable, it 
can also eliminate steeply dipping events in low-velocity re- 
gions. 

In this study we examined the alternative of applying a 
zero-phase, spatially variant, high-cut filter to P and ap/jaz 
after each step of the propagation of the solution, according to 
equation (21). The high-cut wavenumber for the filter K,,, at 
each point of application was based on the criterion K,,, = 

w/c,,, 3 where c,,, denotes the highest velocity in a taper 
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ticial, scrvcs the purpose of showing the important character- 
istics of evanescent energy removal. 

i i Sl.CC?p 

The synthetic zero-offset time section for this model is 
shown in Figure 3. The section contains 160 traces and 128 
time samples. The section was calculated by S_k modeling 
(Stolt, 1978) (the model was constructed to make all energy 
travel through region 1 to allow the section to be obtained 
with modeling based on uniform velocity). The result of apply- 
ing the generalized phase-shift migration with a spatially vari- 
ant evanescent filter is shown in Figure 4. We have found that 
fairly long filters are required for obtaining satisfactory results, 
and in the present example the filter contained 41 coefficients
As Figure 4 shows, all events were reproduced correctly. For 
comparison, in Figure 5 we show the result of migration with 
removal of the evanescent energy by the FFT, as in Kosloff 
and Baysal (1983). In Figure 5, the steeply dipping events are 
not reproduced because the removal of the evanescent energy 
had to be based on the high velocity in region 2. 

FIG. 1. Eigenvalues of matrix 4 in the complex plane. 

region surrounding the point of application. In the present 
study the region size was chosen to be 12 traces. The total 
length of the filter was 41 points. 

The following synthetic example illustrates the removal of 
the evanescent energy. The structure consisted of four layers 
with dips ranging between 0 and approximately 70 degrees 
(Figure 2). The velocity structure of the model included two 
regions of velocities 1500 m/s and 3000 m/s separated by a 
vertical interface (Figure 2). This example, though highly arti- 

PRACTICAL ASPECTS OF APPLYING 
THE GENERALIZED PHASE-SHIFT METHOD 

In this section we discuss a few factors relevant to efficient 
implementation of the generalized phase-shift method. 

Kosloff and Baysal (1983) pointed out that poststack depth 
migration by depth extrapolation should include upgoing 
energy only. However, use of the full acoustic wave equation 
can cause the generation of downgoing energy at sharp veloci- 
ty interfaces (Kosloff and Baysal, 1983). The solution was to 
remove the downgoing waves from the final section by filter- 
ing out all negative wavenumbers. In the present study, we 
chose instead to use a modified version of the full acoustic 
wave equation which is impedance-matched for waves im- 
pinging vertically on horizontal interfaces (Baysal et al., 1984). 

.oo 

FIG. 2. Depth structure of four dipping layers with dips ranging between 0 and 70 degrees. 












