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Accurate depth migration by a generalized phase-shift method

Dan Kosloff* and David Kessler*

ABSTRACT

A new depth migration method derived in the space-
frequency domain is based on a generalized phase-shift
method for the downward continuation of surface data.
For a laterally variable velocity structure, the Fourier
spatial components are no longer eigenvectors of the
wave equation, and therefore a rigorous application of
the phase-shift method would seem to require finding
the eigenvectors by a matrix diagonalization at every
depth step. However, a recently derived expansion tech-
nique enables phase-shift accuracy to be obtained with-
out resorting to a costly matrix diagonalization. The
new technique is applied to the migration of zero-offset
time sections. As with the laterally uniform velocity
case, the evanescent components of the solution need to
be isolated and eliminated, in this case by the appli-
cation of a spatially variant high-cut filter. Tests per-
formed on the new method show that it is more accu-
rate and efficient than standard integration techniques
such as the Runge-Kutta method or the Taylor method.

INTRODUCTION

A basic part of seismic migration is the downward continu-
ation of surface data to the subsurface. This downward con-
tinuation is carried out with some form of solution of a gov-
erning wave equation. In order to preserve the fidelity of the
seismic data, it is desirable to have the downward continu-
ation as accurate as possible. Gazdag (1978) and Bolondi et al.
(1978) introduced the phase-shift method which yields com-
plete accuracy for laterally uniform structures. However, when
the velocity structure is laterally varying, all reported methods
give only approximate results. They are not exact because
they are either based on approximate solutions to the wave
equation for the medium under consideration, or because they

rely on discrete numerical-solution techniques such as finite
differences (Claerbout and Doherty, 1972; Loewenthal et al,
1976).

This paper shows how the phase-shift method can be gener-
alized to arbitrary velocity structures. The resulting technique
at first appears cumbersome because it requires a matrix diag-
onalization in every depth step. However, Tal-Ezer (1984,
1986) and Tal-Ezer et al. (1986) indicate how the solution can
be obtained accurately without resorting to the matrix diago-
nalization. The application of Tal-Ezer’s method to depth
migration results in a technique which is both accurate and
efficient compared to methods based on a numerical solution
of the wave 'equation. The new scheme is demonstrated for
poststack migration.

In the next section, the generalized phase-shift method for
an arbitrary velocity structure is derived. It is subsequently
shown that for a laterally uniform velocity model the method
degenerates into the ordinary phase-shift method as in
Gazdag (1978) and Bolondi et al. (1978). Next we describe the
implementation of the generalized phase-shift method with
Tal-Ezer’s solution technique. The resulting algorithm is
tested for poststack migration of a synthetic time section
obtained from a model with heterogencous velocities.

THE GENERALIZED PHASE-SHIFT METHOD

The generalized phase-shift method is based on the solution
of the temporally transformed acoustic wave equation

where x and z, respectively, denote horizontal and vertical
Cartesian coordinates, P(x, z, w) denotes the temporal trans-
form of the pressure field, w is the frequency, and (x, z) is the
velocity field (Kosloff and Baysal, 1983). As in Kosloff and
Baysal (1983), it is convenient to recast equation (1) as a set of
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two first-order coupled equations given by
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The downward continuation in the migration consists of the
solution (2) for each frequency at all depths under the initial
conditions of the values of P and dP/dz at the earth’s surface
z = 0 (Kosloff and Baysal, 1983).

Since seismic data consist of time histories at discrete points
on the earth’s surface, the solution of equation (2} must in-
clude a discretization in the horizontal coordinate. With N
denoting the number of seismic traces and dx the trace spac-
ing, equation (2) transforms into a set of 2N, coupled ordinary
differential equations in the variables F(idx, z, o) and
8P/oz(idx, z, w), i=0, ..., N,— 1. The horizontal dis-
cretization requires an approximation for the derivative term
in equation (2). Whether this derivative is calculated by the
Fourier method as with the ordinary phase-shift method
(Gazdag, 1978), or by finite differences with periodic horizon-
tal boundary conditions, it can be written as the cyclic convo-
lution

25 Na
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e (idx, z, w) = 3 P(jdx, z, \)W,_,, (3)
j=0

where W, denotes a convolutional operator (for nonperiodic
boundary conditions, the convolution becomes noncyclic). For
example, for second-order finite differences, W, = —2/dx? and
W_, =W, = 1/dx?, and W, =0 for |i| = 2. For the Fourier
second-derivative operator,

_— 2n \2 (L + 1)
7 AN, dx 3

and 4)

with N, = 2L + 1 (see the Appendix). In most reported appli-
cations, the derivative has been calculated with the fast Fou-
rier transform (FFT) (Gazdag, 1978; Stolt, 1978; Gazdag,
1980; Kosloff and Baysal, 1983); however, a direct application
of equation (4) gives identical results. Computational efficiency
determines which approach is used in the calculations.

With the spatial discretization and specification of the
second-derivative approximation, equation (2) can be recast as
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denotes a column vector of length 2N containing first the N
pressures P(idx, z, w) and then the N_ pressure derivatives
éPjoz(idx, z, ®), i =0, ..., N, — 1. The 2N_ by 2N_ matrix A
can be partitioned according to

0 I
Al= Ny i
A4, 0
where I,, denotes the N_ by N_ identity matrix, and the ele-
ments of the N, by N, symmetric submatrix 4,, are given by

—
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In equation (6), ¢, is a shorthand notation for ¢(idx, z), and we
used the periodicity of the coefficients W, given by W_, =
Wy._i. As with the ordinary phase-shift method, the solution
here is propagated in depth increments. Within each in-
crement z 1o z + dz, the velocity is assumed to be invariant in
the vertical direction although it may vary horizontally. The
solution of equation (5) can then be written as

g [A4d.] P (7)
op P LA op
0z oz

z+dz z

We now show that solution (7), excluding evanescent com-
ponents, embodies a phase shift of eigenvector coefficients of
A. For periodic boundary conditions and a symmetric second-
derivative operator, the N, by N_ submatrix A, in equation
(6) is symmetric. Its eigenvalues are therefore real. We denote
these eigenvalues by X, A, ..., ky__, and the corresponding
normalized and mutually orthogonal eigenvectors by V,, V,,

. Vs . For simplicity, we assume that all the eigenvalues
are nonzero (which is usually the case in actual calculations);
however, the derivations can be modified to account for zero
eigenvalues as well. Given the eigenvalues and eigenvectors of
A,y it can be verified by substitution that the 2N eigenvalues
of matrix A are given by + V/ +1=0,..., N, — 1. The corre-
sponding eigenvectors are given by

I e ) e
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With these eigenvectors we define a 2N by 2N, matrix Q in
which the columns consist of the eigenvectors of A. We then
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have the relation
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where A is the diagonal matrix
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When both sides of equation (7) are multiplied by Q from the
left, we obtain [using equations (8), (9), and (10)],

-1 P = Ad - F 11
0| .5 e [Adz0 | an
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The entries of the diagonal matrix exp [A dz] are given by
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The phase-shift character of the downward extrapolation now
becomes apparent. The vectors

0! P and Q! P
op oF
z z+dz

give the coefficients of the eigenvector expansion of

P P
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respectively. In the propagation of the solution from depth z
to depth z + dz, the components are multiplied according to
equations (11) and (12) by exp (\/?:dz) or exp (—+/A;dz),
i=0,..., N, — 1, respectively. The 2N eigenvalues of matrix

A, given by i\/k,., i=0,..., N, — 1,are either purely real or
purely imaginary depending upon the sign of A,. When an
eigenvalue 4./}, is imaginary. the corresponding coefficient
is propagated in equation (11) by a phase shift. Conversely,
when i\/ﬁ: is real, the component is propagated by a multi-
plication by a real exponential. As with the ordinary phase-
shift method, the components in this case span the evanescent
part of the solution. For numerical stability (as discussed
later); the evanescent components need to be eiiminated from
the solution.

SOLUTION FOR HORIZONTALLY UNIFORM
STRUCTURES

In this section we show that with the Fourier second-
derivative approximation and for horizontally uniform struc-
tures, the phase-shift relation (11) degenerates into a variant of
the ordinary phase-shift method described in Gazdag (1978).

Denote the uniform velocity in a strip between z and z + dz
by ¢y. The elements of the submatrix 4, in equation (6) are
now

2
[AN] b, W,,  Lj=0,..,N,—1 (13
i

where W, is given by equation (4). For the Fourier method
second-derivative approximation, the eigenvalues and eigen-
vectors of equation (13) can be calculated. From the Appen-
dix, the values 1/\/N, (¢’®), v=0,..., N, — 1 [or equiva-
lently, cos (K, jdx) and sin (K, jdx) if one wishes to deal with
real eigenvectors] represent the components of the vth eigen-

efxﬂx -1dz

1
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vector of the operator W. By equation (13), they also represent
the components of the vth eigenvector of 4,,. K, is given by

2r Nx
N d v for v=0,...,—2——1
X
K, = * . (14)
2n N,
- (N,—v) for v=—7,.., N, —1
N.dx 2

The corresponding ¢igenvalues are given by
2
i)
A= —— + K2, (15)
¢
The entries of the N, by N, matrix Y, composed from the
eigenvectors of [ 4,,], are then given by

v, = — g iy =0,.. N ,—1
= exp|{i—jr), ,r=0,...,N, — L
ir \/N_x p ij J
This matrix is exactly the discrete Fourier transform (DFT)
matrix (e.g., Bracewell, 1978). When it operates on a vector,
the result is the discrete spatial Fourier transform of that
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vector. The matrix Q of equation (10) then becomes
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With this result, the propagated solution (11) now becomes
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where P denotes the spatial Fourier transform of P,

Nx—1

Y. P(ndx, z, w) exp [—i T nv] .
. N

n= x

=
Pir, z, ®) =

x

It is now clear that equation (17) is a variant of the ordinary
phase-shift method of Gazdag (1978) and Bolondi et al. (1978).
\Lvith the z goordinate increasing downward, the components
P, + (in )P /éz), v = 0, ..., N, —1, correspond to upgoing
waves, and P, — (in XéP/dz), v=0, ..., N__, correspond to
downgoing waves. As pointed out in Kosloff and Baysal
(1983), this variant of the phase-shift method assures the conti-
nuity of both £ and 6I§/5z across horizontal interfaces. This is
unlike the phase-shift migration method in Gazdag (1978)
which includes zonly upgoing energy and does not assure the
continuity of 6P/dz. From a practical viewpoint, however, it is
doubtful whether assuring the continuity of 65/62 lends any
advantages to poststack migration. The exploding-reflector
concept on which the migration is based includes only upgo-
ing energy (Loewenthal et al., 1976) and therefore does not
account accurately for amplitudes.

SOLUTION FOR ARBITRARY VELOCITY STRUCTURES

When the velocity structure varies arbitrarily in the lateral
direction, the eigenvalues and eigenvectors of matrix A can no

1077
. . ]
o o
— Voo - VONXAI
Co Co
Vi ianTNX—I
B
inN,qVﬁ,—w inN,—lVﬁ,—l Ne—1
. , ; (16)
— 10 v — 1 v
co 00 ¢ ON:—1
—in, V¥ —imVin, -4
_mN,‘—1V;X71() _ian—1VﬁxA1Nx—_1J
1 2m
and Vi = exp| —i — k7.
VN, N,
. oF, |
Py +ing P
= . aPzN -1
Py,_1+ My 4 2z
g £
—inodZo 13’0 Mo _'96&
z
. Py _
e~ MNv-x—1dZo PzN,fl _ ianvl gx 1 .
— | z _
(17

longer be obtained by inspection. It would therefore seem that
a matrix diagonalization would have to be performed before
each propagation according to equation (11). However, recent
work by Tal-Ezer (1984, 1986) and Tal-Ezer et al. (1986) indi-
cates how the generalized phase-shift method can be effected
without having to resort to expensive matrix diagonalizations.
This section describes the implementation of Tal-Ezer’s
method to-depth migration. A mere detailed. discussion. of the.
solution technique can be found in Tal-Ezer (1984, 1986) and
Tal-Ezer et al. (1986).

The solution is based on a Chebychev expansion of the
generalized phase-shift method before matrix diagonalization
(7). The expansion is derived from the scalar expansion for the
function e given by

=2 Ck‘]k(R)Qk(%)s [x| < R (18)

k=0
(e.g., Hamming, 1973). J, denotes the kth-order Bessel func-
tion, @, denote Chebychev polynomials, Co =1 and C, =2
for k > 0, and x is real (or at least in sufficient proximity to
the real axis). When x is imaginary (or sufficiently close to the
imaginary axis), the above expansion is replaced by the series

x X
e = ZCka(R)Tk(—), |x| <R, (19
k=0 R
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where the polynomials T, (x) satisfy the recurrence relations
To(x) = 1,
Ti(x) = x
and (20)
Ty (%) = Ty o (%) + 2x Ty (x)

(Tal-Ezer, 1984, 1986). By analogy with equation (19), the ex-
ponent in equation (7) is expanded according to

P P
- = A dz ~
op exp [Adz] o5
oz 0z
z+dz z
® Adz P
= RC, T — ~ 21
saman(5) | e

az

This expansion is valid when the eigenvalues of [Adz] are
purely imaginary. As discussed in the next section, this re-
quires elimination of the evanescent components from the
solution. Also, R must be chosen large enough to span the
range of the eigenvalues of [Adz]. It was shown in Tal-Ezer
(1984) that for k > R, the series expansion converges exponen-
tially. The number of terms required in the sum in equation
(21) wilt therefore always be finite.

Equation (21) serves as the basis for implementing the gen-
eralized phase-shift migration. First the range R of the eigen-
values of [Adz] needs to be estimated (but not necessarily
evaluated exactly). Based on the case of laterally uniform ve-
locity, we have found the estimate R = wdz/c with ¢,
denoting the lowest velocity in the strip (z, z + dz), sufficient
for stable results. The Bessel functions J, (R) are computed
next. The solution

min >

%l ™

I

kas}
[N

z+dz

is then calculated recursively according to the following:

(a) Given
B
T, P
0z
and
- -
T P
k 615- +
0
| Z ).

generate the next polynomial by the formula

P [ 5 | 4z [ P
Teilop| =T lap| *4 & | los| @
oz | oz oz |

(b) add another term to the sum in equation (21).

The first two values of T, T, needed to initialize the recursion

are given by

and

il

P Adz P
i . = .
oP R oP

oz Z

-z z

(Tal-Ezer, 1984, 1986). Steps (a) and (b) are repeated until a
sufficient number of terms have been calculated in the sum
{21). Then the solution is carried out in the next lower level.
When P(x, z, m) has been calculated completely, the final mi-
grated section is cumulated by

P (x,2) =Y P(x, z, ®

(Kosloff and Baysal, 1983).

ELIMINATION OF EVANESCENT ENERGY

The real eigenvectors of the solution to the wave equation
(2) correspond to evanescent components. These are non-
sinusoidal inhomogeneous waves. They can be generated, for
instance, when crossing velocity interfaces at angles beyond
the critical angle, or from seismic sources that generate spheri-
cal waves (Aki and Richards, 1980). Since evanescent compo-
nents decay exponentially with distance, the information con-
tained in them is usually lost and they therefore cannot be
used in seismic imaging. The evanescent components can lead
to numerical instability in the form of exponential growth of
rounding errors. Consequently, depth migration based on
depth extrapolation with the full acoustic wave equation re-
quires the elimination of the evanescent energy (Kosloff and
Baysal, 1983).

Figure 1 shows the location of the eigenvalues of matrix A
of equation (7) in the complex plane. In an ideal solution,
evanescent components corresponding to the real eigenvalues
would be eliminated, whereas components corresponding to
the imaginary eigenvalues would be unaltered. Unfortunately,
in the general case this requires the separation of the evanes-
cent components through a costly matrix diagonalization. A
method for eliminating the evanescent components without
the matrix diagonalization and without severely affecting the
nonevanescent components is therefore required.

A scheme proposed in Kosloff and Baysal {1983) included
use of the Fourier method and elimination of all the Fourier
components whose wavenumbers satisfy K, > wo/c_,,, where
Cmax denotes the highest velocity in the depth increment be-
tween z and z + dz. Although this scheme has proven stable, it
can also eliminate steeply dipping events in low-velocity re-
gions.

In this study we examined the alternative of applying a
zero-phase, spatially variant, high-cut filter to P and &P/oz
after each step of the propagation of the solution, according to
equation (21). The high-cut wavenumber for the filter K, at
each point of application was based on the criterion K, =
w/c where ¢_,, denotes the highest velocity in a taper

max ?
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Fi1G. 1. Eigenvalues of matrix A in the complex plane.

region surrounding the point of application. In the present
study the region size was chosen to be 12 traces. The total
length of the filter was 41 points.

The following synthetic example illustrates the removal of
the evanescent energy. The structure consisted of four layers
with dips ranging between 0 and approximately 70 degrees
(Figure 2). The velocity structure of the model included two
regions of velocities 1500 m/s and 3000 m/s separated by a
vertical interface (Figure 2). This example, though highly arti-

AR
R
N |
iR A
sl

ficial, serves the purpose of showing the important character-
istics of evanescent energy removal.

The synthetic zero-offset time section for this model is
shown in Figure 3. The section contains 160 traces and 128
time samples. The section was calculated by f-k modeling
(Stolt, 1978) (the model was constructed to make all energy
travel through region 1 to allow the section to be obtained
with modeling based on uniform velocity). The result of apply-
ing the generalized phase-shift migration with a spatially vari-
ant evanescent filter is shown in Figure 4. We have found that
fairly long filters are required for obtaining satisfactory results,
and in the present example the filter contained 41 coeflicients.
As Figure 4 shows, all events were reproduced correctly. For
comparison, in Figure 5 we show the result of migration with
removal of the evanescent energy by the FFT, as in Kosloff
and Baysal (1983). In Figure 5, the steeply dipping events are
not reproduced because the removal of the evanescent energy
had to be based on the high velocity in region 2.

PRACTICAL ASPECTS OF APPLYING
THE, GENERALIZED PHASE-SHIFT METHOD

In this section we discuss a few factors relevant to efficient
implementation of the generalized phase-shift method.

Kosloff and Baysal (1983) pointed out that poststack depth
migration by depth extrapolation should include upgoing
energy only. However, use of the full acoustic wave equation
can cause the generation of downgoing energy at sharp veloci-
ty interfaces (Kosloff and Baysal, 1983). The solution was to
remove the downgoing waves from the final section by filter-
ing out all negative wavenumbers. In the present study, we
chose instead to use a modified version of the full acoustic
wave equation which is impedance-matched for waves im-
pinging vertically on horizontal interfaces (Baysal et al., 1984).

.00
200.00
40000

E
K=
=3
o
@

L 600.00 O

800.00
1000.00

FiG. 2. Depth structure of four dipping layers with dips ranging between 0 and 70 degrees.
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With this wave equation, the system (2) is replaced by

0
al P c P )
g KL FESEAN )
oz 2 ox? 0z

The basic variables are now P and ¢(0P/5z). Since the final
imaged section is given by

Pog(x,2)=Y P(x, z, m)

(Kosioff and Baysal, 1983), only the real parts of # and

c(éP/6z) need to be used in the calculations. This results in a
savings of a factor of two in computational effort compared to
the previous scheme.

The next question is when the series expansion by Tal-
Ezer’s method can be safely truncated. Since the Chebychev
polynomials in equation (19) are bounded by unity, the mag-
nitude of the Bessel coefficients can serve as a criterion for
truncating the expansion (Tal-Ezer, 1984). Since the Bessel
functions J, (R) tend to zero exponentially for k > R (Tal-Ezer,
1984), we adopted the strategy of truncating the series at a k
value for which the magnitude of J, (R) becomes insignificant
compared to the magnitude of the largest coefficient found so
far.

The next issue concerns choice of the depth step dz for the
migration. From an economic point of view, Tal-Ezer’s
method is most efficient for large steps. However, sampling
considerations dictate small steps (e.g., dz =~ cdt/2 with dt
equal to the time sampling rate and ¢ equal to a characteristic
interval velocity). A slight modification of equation (21), how-
ever, can allow propagation in large depth steps while also
obtaining results at intermediate levels:

F p
oF =exp [Aa dz] oF
E z+adz E z
= L h@RGT, fgf) Sloe
oz

z

with 0 < « < 1. In equation (24), the Chebychev matrix poly-
nomials T, obtained in equation (22) are also used for the
intermediate levels, and only additional sets of Bessel func-
tions J(aR) need to be evaluated (a relatively inexpensive
calculation). The size of the depth step is therefore determined
by the degree of discretization required for the velocity field.
Propagation through large homogeneous regions (e.g., the
ocean layer) can be catried out in one step.

Finally, we compare the efficiencies of the generalized
phase-shift method and methods based on standard tech-
niques for solving ordinary differential equations. We con-
sidered the simplified system

0 1
o [7] P 05
oz |oP | o? éP |’
R _— 0 A
oz c? oz

obtained from equation (2) by assuming uniform velocity and
setting the spatial derivative term to zero. With initial con-

ditions P = 1 and dP/éz = 0, the exact solution of this system
is P = cos (0z/c) and 6P/dz = —(w/c) sin (0z/c). The range R
of the eigenvalues of equation (25) is given by R = w/c. We
compared the computational effort for solving this equation
for different interval sizes wz/c using Tal-Ezer’s method, a
fourth-order Runge-Kutta method (Kosloff and Baysal, 1983),
and a third-order Taylor method (Gazdag, 1980; Berkhout
and Van Waulften, 1979). In the comparison we required ma-
chine accuracy (32 bit) for the generalized phase-shift method,
and examined the performance of the other two methods for,
respectively, 1 percent and 0.1 percent accuracy. The results of
the comparisorr are summmarized in Figure 6 i which the hori-
zontal axis gives the step size and the vertical axis gives the
number of required function evaluations (e.g., the number of
multiplications by the matrix A).

N o TAYLOR 0.1% |
11 =K .7 =
50 2 TAYLOR 1.0%
200 — 2 R 1.0%
asoJ a TAL—EZER /’

IVALUATIONS

FUNCT OM
i
)
s}

2C0 7

MUMBER OF

]
2.0 4.0 6.0 8.0 10. 12. 14. 16. 18. 20. 22.

DIMENSIONLESS DEPTH STEP SIZE

FiG. 6. Comparison of Taylor, Runge-Kutta, and Tal-Ezer

methods.
o 4620 m
L [+]
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|
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L/ el 2400 m/s T
7 T 2200. m/s
[ 2600. m/s e
R -..2400. m /5
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F1G. 7. Depth structure for the heterogeneous model.
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The results show the distinct superiority of Tal-Ezer’s
method over the Runge-Kutta and Taylor methods. In con-
trast to the Runge-Kutta method and the Taylor method, the
relative efficiency of Tal-Ezer’s technique improves with an
increase in increment size. The ratio N/(®wz/c) then approaches
an asymptotic value of unity (Tal-Ezer 1984, 1986). Converse-
ly, because of the accumulation of errors in each step, the
relative efficiencies of the Runge-Kutta method and the Taylor
method decrease for large distances. This indicates that ex-
treme caution must be exercised in the choice of integration
steps when using these methods since, even with a step size
well below the stability limit, the quality of the results at large
depths can be severely degraded. In addition to its superior
performance, Tal-Ezer’s method has the additional benefits of
machine accuracy and continuous error control.

EXAMPLE: FAULTED STRUCTURE

In this section we present an example of migration of a
synthetic time section obtained from a highly heterogeneous,
faulted model (Figure 7). The model contains a number of
velocity regions which are broken by two faults. The horizon-
tal velocity contrast across the faults reaches a factor of 1:2 in
certain locations (Figure 7).

The synthetic zero-offset time section obtained from the
model is shown in Figure 8. The section was produced by the
Fourier forward-modeling algorithm described in Kosloff and
Baysal (1982). An exploding-reflector option was applied for
producing the zero-offset section (Loewenthal et al.,, 1976). The
calculation used a grid size of 231 x 231 with horizontal and
vertical grid spacings of 20 m and 10 m, respectively. In order
to reduce multiple energy, the nonreflecting two-way wave
equation described in Baysal et al. (1984) was used. It is im-
portant to emphasize that the time section and the migration
were produced by different methods.

Figure 9 shows the result of applying the generalized phase-
shift depth migration to the time section. The migration used
the correct interval velocities of the model (this is seldom the
case with field data), so all events migrated to their correct
locations. The faults are well-defined, except for what appears
as overmigration at the truncations of the layers. This overmi-
gration probably can be attributed to the fact that the velocity
changes there by a factor of two within one trace spacing.

CONCLUSIONS

An accurate depth migration technique has been presented
which is based on an expansion of the formal solution to the

acoustic wave equation. The new algorithm is faster and also
more accurate than methods based on standard techniques for
solving ordinary differential equations, such as the Runge-
Kutta method or the Taylor method.

Depth migration by depth extrapolation with the full acous-
tic wave equation requires removal of evanescent energy when
the structure is not laterally uniform. In this study the evanes-
cent energy was eliminated by applying a spatially variant,
high-cut filter to the solution after each step. The filter coef-
ficients were adjusted to match the velocity in a window
around the point of application. The synthetic example sug-
gests that the procedure may be successful even in situations
of highly varying velocity.

We believe that the techniques used in this study can be
applied to other areas of geophysics that require the solution
of large systems of coupled linear differential equations. In
particular, the method of Tal-Ezer has already been applied to
seismic forward modeling by the Fourier method (Tal-Ezer et
al., 1986), as well as to common-shot migration (Reshef and
Kosloff, 1986).
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APPENDIX

In this appendix we derive the weights of the Fourier
second-derivative operator. Let f(n) represent a discrete func-
tion defined over the spatial grid points n =0, ..., N, — 1.
The following derivations assume that the number of points
Nx is odd (this avoids special consideration of the Nyquist
frequency which only exists for even-numbered grids). The

forward and the inverse discrete Fourier transforms (DFT) of
f(n) are defined by

Nx~

! 2n
—i = vn,
P f(n) exp i N, %
v=—-L,...,0,..., L, (A-1)

fv)=
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and

Lo 2n
Sy =~ ¥ J(s)exp [i;vn],
x v=—L

n=0,...,N,—1, (A-2)

with N_=2L + 1 (Bracewell, 1978). The Fourier second-
derivative approximation is obtained by multiplying f(v} by
—Qnv/N dx)* for v = —L,..., 0, ..., L, and forming the
inverse transform. This gives

2 L 2
[:ilx_{ (n) = _1_ Yy - ( 2n ) 7(v) exp I:i —;E vn:l (A-3)

Nx v=-~L Nxdx

x

or, by substituting f {v) from equation (A-1),

d? 1k 2nv \?
_fl_(n)z._ Z —
dx N, ., ~, N, dx

2n Mt 2n
X exp l-N—xvn ngof(n)exp[—livn]}.

Changing the order of the summation and combining terms
yields

de 1 Nx—1 '
E(")—ﬁ: ’E,of(")
L 2y \? 2n , A4
x w;L_(NIdX exp z-N—x(n—n)v]. (A-9)

Equation (A-3) expresses a convolution of the form

&

= Wai, (A-5)

with W, given by

1 X 2nv \? 2%
N _ j — . A-6
=N X (N dx) exp [’N V"] (A-6)

x

Equation (A-6) can be expressed as the limit
1 a? L 2n
W =——lim — exp|li—ua,lr.
" Nxdxz a—n da2 {V:Z"L P I: Nx ]}

This equation can be evaluated directly by taking the second
derivative of the geometrical series sum formula and then
passing to the limit a — n. The final result becomes

2
W= — 2n \ UL+ 1)
N_dx 3

and




