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Summary 

 

The implementation of new recursive operators for 

computation of numerical derivatives results in minimal 

dispersion in Reverse Time Migration Prestack Depth 

Migration (i.e. RTM PSDM). Compared to the more 

commonly used finite difference operators, the presented 

new method enables imaging of higher frequencies in RTM 

PSDM. Since RTM PSDM is the modern method of choice 

for imaging many exploration targets, computer 

optimization is an integral part of code development. We 

present here details of the GPU implementation for newly 

developed spatial derivative operators which enable routine 

use in industrial settings. 

 

Introduction 

 

RTM is now the algorithm of choice for imaging of seismic 

data used in exploration of potential hydrocarbons 

reservoirs. Commonly, the high computational cost of 

commercial RTM leads to use of Finite difference (i.e. FD) 

operators for computation of spatial derivatives. However, 

application of FD operators may result in numerical 

dispersion that appears as coherent noise on depth migrated 

seismic data. In geological settings that are difficult to 

illuminate and image such as those close to and beneath salt 

bodies, coherent noise can be interpreted as primaries and 

can cause incorrect analysis of the seismic data. Since so 

many exploration targets rely on RTM PSDM accuracy, it 

is very important to develop new generation of RTM 

PSDM algorithms that will produce minimal dispersion 

PSDM seismic data and therefore improve confidence in 

interpreted results. 

 

Numerical approximation of spatial derivatives for 

RTM 

 

Here we present a new spatial recursive operator that is 

used for application of spatial derivatives in RTM 

algorithms in an effort to produce more accurate and 

minimal dispersive RTM PSDM data. The application of 

these operators requires the solution of tri-diagonal linear 

equation systems which can be carried out efficiently. The 

derivative operators are designed by a Remez exchange 

procedure (Kosloff et. al. 2008). The importance of using 

minimal dispersive numerical operators is that it enables us 

to use higher frequencies in commercial RTM PSDM while 

maintaining reasonable computational cost. This is 

compared to FD based RTM PSDM that requires increased 

computational resources for migrating higher frequencies.  

 

Recursive derivative operators 

 

We illustrate here the recursive derivative operator for 

approximating the second spatial derivative. The 

approximation of other higher order spatial derivatives 

proceeds in an analogous manner. 

 

Given a function 𝑓(𝑥), we denote its sampled values by 

𝑓[𝑗] = 𝑓(𝑥 = 𝑗𝑑𝑥) 
 
Derivative approximation can be written as 

 

𝜕2𝑓

𝜕𝑥2
[𝑗] =

𝑎0 + 𝑎1∆1 + 𝑎2∆2 +∙∙∙ +𝑎𝑁∆𝑁

1 + 𝑏1∆1 + 𝑏2∆2 +∙∙∙ +𝑏𝑀∆𝑀
𝑓[𝑗] 

 

Where   ∆𝑘𝑓[𝑗] = 𝑓[𝑗 + 𝑘] + 𝑓[𝑗 − 𝑘]. 
We will consider operators for which 𝑀 ≤ 𝑁. 

In this case it can be recast in an equivalent form  

 

𝜕2𝑓

𝜕𝑥2
[𝑗] = (𝑐0 +∙∙∙ +𝑐𝑁−𝑀∆𝑁−𝑀 +

𝑑0

1 + 𝛽0∆1
+ ⋯

+
𝑑𝑀−1

1 + 𝛽𝑀−1∆1
) 𝑓[𝑗] 

 

Each of the rational terms in (2) comprises a tri-diagonal 

equation system. In the present implementation, only one 

rational term is used. 

 

GPU implementation 

 

In general, computer implementation of RTM algorithms 

involves code optimization to take advantage of the 

provided hardware resources. Since most of the compute 

time in RTM code is in the spatial derivatives, the main 

focus in the computer implementation is in the spatial 

derivatives operators. In a typical application of 

commercial RTM, migrating a single shot gather aimed at 

imaging a potential sub-salt target in a deep water 

environment,  numerical spatial derivatives are calculated 

approximately 30,000 times. This operation is repeated for 

surveys that contain tens of thousands of recorded shot 

gathers. Therefore, the hardware implementation of these 

numerical operators plays a crucial factor in any 

commercial implementation of RTM PSDM. Due to the 

vast amount of computational resources needed, hardware 

(1) 

(2) 
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GPU implementation of recursive operators RTM 

accelerators such as GPUs provide a very practical solution 

and are successfully used as the compute engine of RTM 

PSDM algorithms. 

 

The numerical approximation of the spatial derivatives of 

the seismic wavefield is characterized by a small number of 

arithmetic operations applied to a large number of data 

points. This operation is applied at every point in the 

seismic cube, represented on a Cartesian grid. A typical 

size of the grid is several Gigabytes (i.e. GB). The main 

challenge is to efficiently supply the processing unit with 

access to data. The rate of data transfer between the 

different types of memory is the most critical part of the 

implementation. 

To understand the GPU implementation with recursive 

operators, and the challenges it presents, we first review the 

main elements of the GPU implementation using FD  

approximation of the derivatives (Micikevičius, 2009 and 

2011). 

 

The 1D FD approximation of the second spatial derivative 

reads: 

𝜕2𝑓

𝜕𝑥2
[𝑘] ≅ ∑ 𝑎𝑗(𝑓[𝑘 + 𝑗] + 𝑓[𝑘 − 𝑗])

𝑁/2

𝑗=0

 

 

Where 𝑓[𝑘] is the function value at grid point 𝑥 = 𝑘𝑑𝑥.  𝑁  

is the approximation order with the FD coefficients 𝑎𝑗 . 

 

In a typical efficient 3D implementation, the operations in 

Equation 3 are carried out in the 3 spatial directions. For 

evaluating the spatial derivative at a point (𝑖𝑥 , 𝑖𝑦 , 𝑖𝑧) in the 

calculated volume, we need to use the data values at 𝑁/2 

points in each direction around the target point.  

 

To optimize the data access, it is arranged in depth slices. 

In each depth slice the X direction is the axis in which the 

data is contiguous. The Y direction is the second axis and 

the depth (Z) direction is the slowest axis. A GPU thread 

block of size 𝐷𝐼𝑀𝑋 ∙ 𝐷𝐼𝑀𝑌  computes the spatial 

derivatives of 𝐷𝐼𝑀𝑋 ∙ 𝐷𝐼𝑀𝑌 ∙ 𝑁𝑧  grid points, where 𝑁𝑧 is 

the number of points in the volume along the Z direction 

(see Figures 1 and 2). Each thread is computing 𝑁𝑧 points 

by looping on 𝑁𝑧. At each depth level the derivatives of 

𝐷𝐼𝑀𝑋 ∙ 𝐷𝐼𝑀𝑌 points are computed by the thread block. 

 

GPU block shared memory is used for 𝐷𝐼𝑀𝑋 ∙ 𝐷𝐼𝑀𝑌 

slices for optimizing the computation of the derivatives in 

the X and Y directions. Local memory is used for 

computing the vertical derivative. 

 

The main computational effort in applying the recursive 

operators is in a term of the form 
𝑑0

1+𝛽0∆1
𝑓[𝑗]  in Equation 2. 

This is solved as a tri-diagonal system of equations. 

The solution involves two recursive loops: 

 

aux[0] = f[0]; 
for(  𝑖𝑥=1; 𝑖𝑥<𝑁𝑥; ++𝑖𝑥 ) { 
        aux[𝑖𝑥] = f[𝑖𝑥] - G[𝑖𝑥] * aux[𝑖𝑥-1]; 
} 
 

d2f[𝑁𝑥-1] = aux[𝑁𝑥-1] * H[𝑁𝑥-1]; 
for(𝑖𝑥=𝑁𝑥-2; 𝑖𝑥>=0; --𝑖𝑥 ) { 
        d2f[𝑖𝑥] = (aux[𝑖𝑥] - d2f[𝑖𝑥+1]) * H[𝑖𝑥]; 
} 
 

𝑓[𝑖𝑥] is the data value at a grid point 𝑖𝑥. 𝐻[𝑖𝑥] and 𝐺[𝑖𝑥] 
are coefficients designed for an accurate approximation of 

the second derivative of 𝑓[𝑖𝑥]. The function 𝑑2𝑓[𝑖𝑥] 
becomes a part of the resulting second derivative 

approximation at point 𝑖𝑥 after the second loop. 

 

In both forward and the backward loops the result at each 

point depends on the result at the previous point, which 

makes the loops recursive. 

 

In 3D the same type of operation is applied in each 

coordinate direction. The forward and backward loops are 

applied in each direction independently. In the GPU 

implementation we cannot share data between threads in 

the same way as the FD implementation. Using FD, the 

loop over the slow axis (Z) is very efficient in terms of 

accessing data between global memory and local and 

shared memories.  

 

In the recursive operators we can use the same idea as in 

FD to fetch the data from global to local memory when 

applied to the slow (Z) axis and to the second (Y) axis. 

However, special consideration is taken to access the data 

in global memory for computing the derivative along the 

first (X) axis. 

 

In order to improve the computational performance, the 

computation is split into two parts. First the forward loop is 

computed. The intermediate result aux is stored. Second, 

the backward loop is performed. 

 

The main components for the first stage are: 

1. Each thread block works on one depth slice of size 𝑁𝑥 ∙
𝐷𝐼𝑀𝑌 where 𝑁𝑥 is the total number of samples in the X 

direction. The computation along the X axis is performed in 

chunks of size 𝑆𝑀𝑋, where 𝑆𝑀𝑋 is the number of samples 

in the X direction that can fit to shared memory (see Figure 

3). 

2. A shared memory array of dimensions 𝐷𝐼𝑀𝑌 ∙ 𝑆𝑀𝑋 is 

allocated. 

(3) 
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GPU implementation of recursive operators RTM 

3. Data of size 𝐷𝐼𝑀𝑌 ∙ 𝑆𝑀𝑋 is read from global memory 

and stored in shared memory. The read is performed by 

looping along the Y direction and reading the data that is 

contiguous along the X axis. 

4.  𝑆𝑀𝑋 samples of the recursive forward loop are 

computed using the data from shared memory. 

5. The temporary result aux is stored in global memory as 

an auxiliary array in a transposed order in which Y is the 

fast axis and X is the slower. 

6. Steps 3 to 5 are repeated 𝑁𝑥/𝑆𝑀𝑋 times. 

In the second stage of the computation, the backward loop 

is implemented in chunks of the same size 𝐷𝐼𝑀𝑌 ∙ 𝑆𝑀𝑋. 

For each chunk, 𝑆𝑀𝑋 samples of the backward loop are 

computed by reading the data from the auxiliary 

(transposed) array that is stored in global memory. The  

partial result of the backward loop for each chunk is stored 

in shared memory. This partial result of the second 

derivative can then be used efficiently to complete the 

computation in the original order (X axis is fast in global 

memory). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: At each depth level a thread block of size DIMY 

calculates the recursive loops in chunks of size 𝑺𝑴𝑿 ∙
𝑫𝑰𝑴𝒀 

 

FD operators can be implemented on hardware accelerators 

in a relative straight forward manner as described above, 

but can result with less than optimally imaged seismic data. 

This raises the challenge implementing accurate spatial 

derivatives such as recursive operators for hardware 

accelerators as the core  kernel of a RTM PSDM algorithm.  

A solution to this challenge uses all the resources provided 

in a compute node, including both CPU and GPU memory 

and fast data exchange between the two, as well as a 

balanced split of computation between CPU cores and GPU 

cores. This implementation results with a CPU/GPU RTM 

code that is 30% slower than an equivalent high order FD 

based algorithm, but will achieve the goal of providing 

higher frequency RTM PSDM migrated data with minimal 

dispersion. 

 

Example 

 

For illustrating the RTM PSDM recursive operators, we 

constructed a salt environment anisotropic TTI model 

showing potential exploration targets around and beneath a 

salt body. The TTI model is shown in figures 4-6. The 

model is 10 miles long and 30,000 ft. deep. The salt body 

ranges from 5,000 ft. to 20,000 ft. The subsalt targets are 

depths greater than 20,000 ft.  

 

For generating the input dataset, we created a set of 800 

simulated shots over the target salt body. Shot point 

spacing for the simulation is 123.03 ft., Receiver spacing 

41.01 ft. and the cable length is 10Km. Twelve second 

recording time was used in the simulation. 

 

The sedimentary velocity field (shown in figure 4) of the 

model ranges between water velocity and 13,000 ft/s. The 

salt velocity is 14,471 ft/s. The anisotropy delta field 

(shown in figure 5) ranges between 0% - 10% and the 

anisotropic epsilon field ranges between 0% -16%. The 

anisotropic dip field (show in figure 6) was calculated 

based on the sedimentary section dips and ranges from -60 

Y 

SMX 

DIMY 

X 

Figure 1: The 3D volume is arranged in depth slices. 

The data is contiguous in the X direction. Y is the 

second direction and Z is the slow axis.  

Z Y 

X 

DIMX 

DIMY 

Figure 2: A depth slice is divided to GPU thread 

blocks of size 𝑫𝑰𝑴𝑿 ∙ 𝑫𝑰𝑴𝒀 
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GPU implementation of recursive operators RTM 

degrees to +60 degrees. The common shot TTI PSDM 

results of the simulated dataset using the recursive 

operators RTM is shown in figure 7. The model layers are 

displayed in figure 7 to illustrate the accuracy of the PSDM 

algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

 

RTM PSDM is widely used today to assist in the imaging 

of both exploration and production projects. In most cases, 

however, the full frequency range is not input to RTM due 

to (a) the cost implication and (b) the risk of producing 

numerical dispersion. In this study we tackle these two 

limitations by (a) introducing a new derivative operator that 

can be used for migrating higher frequencies with minimal 

numerical dispersion, and (b) implementing these operators 

on a GPU architecture so it can be used cost effectively in a 

production environment. Our observation is that by 

combining a more accurate numerical scheme and a better 

computer optimization, the resulting RTM PSDM can be 

more reliable and the additional computational cost can be 

offset by use of advanced accelerators such as GPUs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 -60 

 -30 

 -10 

60 

 30 

Figure 6: Dip model. The dip model was constructed 

by calculation of the normal to the layers geometry. 

10% 

8% 

6% 

0% 

4% 

Figure 7: TTI RTM PSDM section produced using the 

minimal dispersion recursive spatial operators. 

 14,000 

12,000 

 10,000 

 3,000 

 6,000 

Figure 4: Salt related velocity model. Sedimentary 

layers are truncated against the salt dome.  

Figure 5: Anisotropic delta model. The anisotropic 

epsilon field is 1.6 greater than the delta field. 

SEG New Orleans Annual Meeting Page  4119

DOI  http://dx.doi.org/10.1190/segam2015-5754164.1© 2015 SEG

D
ow

nl
oa

de
d 

08
/2

5/
15

 to
 2

3.
30

.6
5.

12
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



EDITED REFERENCES 
Note: This reference list is a copyedited version of the reference list submitted by the author. Reference lists for the 2015 
SEG Technical Program Expanded Abstracts have been copyedited so that references provided with the online metadata for 
each paper will achieve a high degree of linking to cited sources that appear on the Web. 
 
REFERENCES 

Kosloff, D., R. Pestana, and H. Tal-Ezer, 2008, Numerical solution of the constant density acoustic wave 
equation by implicit spatial derivative operators: 78th Annual International Meeting, SEG, Expanded 
Abstracts, 2057–2061. 

Micikevicius, P., 2009, 3D finite difference computation on GPUs using CUDA: Proceedings of the 2nd 
Workshop on General Purpose Processing on Graphics Processing Units (GPGPU), 79–84, 
doi:10.1145/1513895.1513905. 

Micikevicius, P., 2011, Stencil computation on GPU for seismic migration isotropic, VTI, and TTI RTM 
kernels: SEG Workshop on High Performance Computing in the Geosciences, 
http://www.seg.org/documents/4670773/4673682/Stencil+Computation+on+GPU+for+Seismic+Mig
ration. 

 

SEG New Orleans Annual Meeting Page  4120

DOI  http://dx.doi.org/10.1190/segam2015-5754164.1© 2015 SEG

D
ow

nl
oa

de
d 

08
/2

5/
15

 to
 2

3.
30

.6
5.

12
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1145/1513895.1513905

