GEOPHYSICS, VOL. 53, NO. 9 (SEPTEMBER 1988); P. 1175-1183, 14 FIGS.

Three-dimensional acoustic modeling by the Fourier method

Moshe Reshef*, Dan Koslofff, Mickey Edwards§, and Chris Hsiung**

ABSTRACT

A three-dimensional forward modeling algorithm, al-
lowing arbitrary density and arbitrary wave propaga-
tion velocity in lateral and vertical directions, directly
solves the acoustic wave equation through spatial and
temporal discretization. Spatial partial differentiation is
performed in the Fourier domain. Time stepping is per-
formed with a second-order differencing operator. Mod-
eling includes an optional free surface above the spatial
grid. An absorbing boundary is applied on the lateral
and bottom edges of the spatial grid.

Three-dimensional forward modeling represents a
challenge for computer technology. Computation of
meaningfully sized models requires extensive calcula-
tions and large three-dimensional data sets which must
be retrieved and restored during the computation of
each time step. The computational feasibility of the
Fourier method is demonstrated by implementation on
the multiprocessor CRAY X-MP computer system
using the large secondary memory of the solid-state
storage device (SSD). Calculations use vectorization and
parallel processing architecture. The similarity of nu-
merical and analytical results indicates sufficient accu-
racy for many applications.

INTRODUCTION

Three-dimensional forward modeling is useful in the quality
control and interpretation of three-dimensional (3-D) seismic
surveys and may prove to be important in the understanding
of wave propagation. For 3-D surveys over complicated ge-
ology, it is not simple to trace the origin of all recorded time
section arrivals. To date, most truly heterogeneous 3-D seis-
mic modeling has been performed with approximate methods
based on geometrical optics (Hilterman, 1970). These methods
are useful for a general evaluation but do not give accurate

amplitudes and often break down completely near caustics.
Three-dimensional ray tracing can also become unwieldy for
realistic structures. On the other hand, potentially accurate
direct methods such as finite-difference (Kelly et al., 1976),
finite-element (Marfurt, 1984), or the Fourier method (Gazdag,
1981; Kosloff and Baysal, 1982) have been considered too
expensive for 3-D seismic modeling. This paper demonstrates
that, with the recent advances in supercomputer technology,
such modeling is feasible today and could become common-
place in the near future.

From a mathematical viewpoint, the new algorithm resem-
bles the two-dimensional (2-D) algorithm described in Kosloff
and Baysal (1982). In particular, the solution scheme uses a
spatial grid to discretize the geologic structure. Fast Fourier
transforms (FFTs) are used for calculating spatial partial de-
rivatives and time stepping is achieved by time integration of
second-order differencing. Furthermore, all numerical stability
and dispersion criteria obtained in the 2-D study are found to
be suitable for the 3-D case. However, it must be mentioned
that in the Fourier method neither free-surface boundaries nor
material discontinuities are explicitly defined. A careful com-
parison with analytic solutions is always required. The Fou-
rier method appears very suitable for 3-D modeling because it
has the advantage of requiring a relatively small number of
grid points to achieve a specified accuracy.

The main difficulty in designing the new forward modeling
algorithm was the management of the extremely large volume
of data required for the calculations. Typical forward mod-
eling problems require tens of millions of words of storage, an
amount which exceeds the central memory of most computer
systems. The necessity of retrieving and restoring 3-D data
sets for the computation of each of several thousand time
steps leads to an input-output bound intractable or infeasible
problem when conventional disk storage is contemplated.
With the advent of the 128 million word and larger solid-state
storage devices (SSDs), we have sufficient memory and input-
output bandwidth to perform Fourier method forward mod-
eling with meaningfully sized models. The capability of trans-
ferring more than two billion bytes per second to and from
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central memory negates the input-output obstacle and allows
the design of a CPU bound algorithm.

THE ACOUSTIC WAVE EQUATION
IN THREE DIMENSIONS

Wave propagation in a 3-D acoustic medjum is described
by the following:
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where ¢ denotes time, P(x, y, 2, t) denotes the pressure, C(x, y, 2)
is the velocity field, p(x, y, 2) is the density, and S(x, y, 2, 1)
denotes the source term which is derived from the divergence
of the body forces (Kosloff and Baysal, 1982). When the den-
sity is constant, equation (1) simplifies to the classical wave
equation,
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A third version of the acoustic wave equation, the so-called
nonreflecting wave equation which highly reduces layer reflec-
tions, is obtained from equation (1) after impedance matching
(Baysal et al., 1984),
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Depending upon the application, forward modeling consists of
a direct numerical solution of one of the above equations.

Numerical solution method

Computation of each time step commences with the calcula-
tion of the right-hand side of equation (1), (2), or (3). For
equation (1), spatial partial derivative terms are calculated
by (1) forward FFT, (2) multiplication by ik,, ik,, or ik,
(3) inverse FFT, (4) multiplication by 1/p, (5) forward FFT,
(6) multiplication by ik,, ik,, or ik,, and (7) inverse FFT. For
equation (3), multiplication by C but not by 1/p is performed.
For equation (2), multiplication by —k2, —kZ, or —kZ is
performed between forward and inverse FFTs. Time integra-
tion is performed in two steps. Let R(x, y, z, nAt) represent the
value of the appropriate right-hand side for ¢t = nAt. The first
partial time derivative of the pressure at t = (n + 3)At is ap-
proximated by the following:
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where D(x, y, z) is equal to pC*(x, , z), C*(x, , 2), or unity for

equation (1), (2), or (3), respectively. The pressure at
= (n + 1)At is then approximated by the following:

P[x, y, z, (n + DAL] = P(x, y, z, nAi)

. OP[x, y, z, (n + 3)At]
ot '

+A (5)

Following time stepping, an absorbing boundary is applied to
P and 8P/t on the bottom and lateral edges of the spatial
grid. The absorbing boundary is applied as a 15-point weight-
ing function (Cerjan et al., 1985).

For the top boundary, there is an option of introducing a
free surface or of allowing events to wrap around to the
bottom of the grid and be eliminated by the absorbing bound-
ary. The free-surface condition is approximated by including a
wide zone with zero velocity above the upper surface of the
model or, equivalently because of periodicity, below the
bottom of the model. Since the boundary condition is not
specified explicitly, comparison with analytic solutions is re-
quired. Computationally, a more accurate solution is achieved
by padding zeros at the end of each constant-x or constant-y
P vector prior to current time-step computations. Although
the FFT length is typically doubled, SSD memory require-
ments do not change, since temporary central memory storage
is used for the zero padded region with each FFT compu-
tation step. As in the 2-D case, we could not find any change
in the stability requirements when free-surface boundary con-
ditions were introduced. A detailed description of the Fourier
method can be found in Gazdag (1981) and in Kosloff and
Baysal (1982).

Computer implementation

Let NX, NY, and NZ denote the number of grid points in
the x, y, and z directions, respectively. The numerical solution
of equation (1) requires four global arrays of size
NX x NY x NZ for variables P, 0P/dt, p, and C and, in addi-
tion, needs one auxiliary array of the same size for the accu-
mulation of the right-hand side R. The solution of equation (2)
or (3) does not require an array for the density p. For mean-
ingfully sized seismic modeling problems, the data storage
needed can be large. For example, 256 x 256 x 256 spatial
grid points require approximately 84 million words of storage
for solving equation (1).

The data storage management scheme is based on a pencil
structure as shown by Figure !. Within a given pencil, the
above five variables are stored in consecutive memory lo-
cations; storage progresses most rapidly in the z direction,
then the x direction, and finally the y direction. Within the

F1G. 1. Pencil data structure. Within the SSD, the left forefront
pencil is stored first. Storage progresses in the x-direction and
then to pencils in the y-direction. The number of x and y
coordinates in each pencil is a program variable. Within each
pencil, five variables are grouped in consecutive words; z is
the fastest increasing coordinate, followed by x, and then y.
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SSD, the storage progresses to the neighboring pencil in the x
direction and then to the next row of pencils in the y direction.
With the pencil storage, a set of data planes perpendicular to
the x-axis (yz planes) or planes perpendicular to the y-axis
(xz planes) can be transferred between the SSD and central
memory with a small number of input-output operations.
Queued input-output operations are used, and a single input-
output operating system request is used to transfer a set of yz
or xz planes. The size of each pencil is a program variable and
a function of available central memory. Pencils containing
8 x 8 x 256 x 5 words were employed for 256 x 256 x 256
spatial grid point models.

Computation of the first time step, t = At, requires two data
passes. At times t =0 and t = —1At, P and 0P/ét are ini-
tialized to zero. The partial derivative terms with respect to x
and z of equation (1), (2), or (3) are computed on all NY xz
data planes. The second data pass computes the partial de-
rivative term with respect to y and performs time stepping
according to equations (4) and (5) on all NX yz data planes.
The absorbing boundary is then applied to P and dP/dt. This
completes the computation of the first time step. Prior to
passing the yz data planes to the SSD, we progress to the
second time step, t = 2At, by computing the partial derivative
terms with respect to y and z. The third data pass computes
the partial derivative term with respect to x and performs time
stepping according to equations (4) and (5) on all NY xz data
planes. The second time step is completed after applying the
absorbing boundary. We then proceed to the third time step
by repeating the calculations of the first data pass prior to
passing the xz data planes to the SSD. The numerical scheme
continues in the above fashion alternately operating on yz and
xz data planes. N + 1 retrieval and storage passes of the data
are required for computation of N time steps. The various
steps of the algorithm are summarized in the schematic dia-
gram shown in Figure 2.

EXAMPLES

Wave propagation for a horizontal interface with a
free surface

This and the following example with known analytical solu-
tions test the accuracy of the numerical algorithm. This exam-
ple features a structure with one horizontal interface and an
upper free surface. The modeled region has an approximate
size of 5 km x 5 km x 2.5 km in the x, y, and z directions,
respectively, with a 256 x 256 x 128 spatial grid and grid
spacing of 20 m. Velocities are 2000 m/s and 4000 m/s for the
upper and lower regions, respectively, with constant density.
The source, a band-limited Ricker wavelet (Figure 3a), was
applied in the upper layer. The source amplitude spectrum
peaks at 25 Hz with significant amplitudes up to 50 Hz
(Figure 3b); 50 Hz corresponds to a spatial wavelength of two
grid points in the upper region.

Figures 4a—4c represent three snapshots for different times
on the zy, zx, and xy planes, respectively. The two vertical zx
and zy planes chosen for the display pass through the source.
The location of each plane can be seen in the upper right
corner of the plots. The events in these figures can be interpre-
ted as the direct wave, the reflected and transmitted waves, the
surface multiple, and the reflected multiples. In the zy plane,
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F1G. 2. Schematic diagram of algorithm steps for the variable-
density case, assuming an even number of time steps. Not
shown is the inclusion of the source term, which is zero except
in a region about the source location.
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the direct and reflected waves are represented in the upper
region; the transmitted wave travels faster and therefore has a
wider wavefront. In the zx plane, note a free-surface reflection.
The horizontal snapshot (xy plane) shows perfect circles due
to the symmetry of the model. The inner circle is the free-
surface reflection, followed by the reflected wave from the ma-
terial interface. The outer circle represents the direct wave
which has almost been absorbed. A different perspective on
the wave propagation is contained in the vertical time section
of Figure 5.

Figures 6a—6c compare numerical and analytical time his-

tories for the receiver locations given in Figure 7. The analyti-

cal solutions are based on the Cagniard-de Hoop method (Aki
and Richards, 1980). The figures show that the agreement be-
tween numerical and analytical solutions is good. The rela-
tively large disagreement in the third event of Figure 6b is due
to the uncertainty of the exact location of an interface within
one grid point in the Fourier method and to the simultaneous
arrivals of the interface and surface reflections. This example
shows that the Fourier method performs well for structures
with high velocity contrasts and a free surface. The frequency

bandwidth of the source contains appreciable energy with
wavelengths as short as two grid points. This is an indication
of the accuracy of the Fourier method, at least for structures
with horizontal interfaces.

Wave propagation for a dipping interface

This example considers wave propagation in a structure
containing a single dipping interface without a free surface.
From a mathematical viewpoint, this example is identical to
the horizontal interface problem, differing only by a rotation.
From a numerical viewpoint, the inclined structure is approxi-
mated on the numerical mesh by stair-stepping which can
cause spurious diffractions. Some sacrifice in the source fre-
quency content is necessary to reduce the diffractions. The
model parameters for this example are identical to those of the
preceding example, with the exception of our using a source
high-cut frequency of 35 Hz instead of 50 Hz. The dip of the
structure is approximately 15 degrees. Figures 8a—8c represent
vertical and horizontal snapshots at different times. The lo-
cation of each snapshot plane is shown in the upper right

F1G. 4. P-wave snapshots for the free-surface model. The position of each plane within the 3-D volume is shown at the
upper right corner. (a){c) correspond to lower left, lower right, and upper snapshots, respectively.
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FiG. 5. Free-surface model—time section along the x-axis.
With increasing arrival times, events are the direct wave, the
reflection from the horizontal interface, the surface multiple,
and the reflected multiple. Automatic gain control has been
applied.
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FiG. 6. Free-surface model-—numerical and analytical time his-
tories. Numerical and analytical solutions are dashed and
solid lines, respectively.
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FiG. 7. Free-surface model—location of receivers for numerical
and analytical comparisons of Figure 6.

corner. The three events appearing in these figures are the
direct, reflected, and transmitted waves. With dip, the reflec-
tion is not symmetrical on the horizontal section (Figure 8c).
The widening of the wavefront in the high-velocity region can
be clearly noted in the zy snapshot. Strike and dip time
sections (Figures 9a and 9b) show the direct and reflected
arrivals. Figures 10a-10c compare numerical and Cagniard-
de Hoop analytical solutions at three receiver locations shown
in Figure 11, The agreement is still good, although some dif-
fraction arrivals can be noticed after the reflection arrival. The
appearance of the diffractions can be seen very clearly in
Figure 9b. A further reduction in the source frequency content
would diminish the diffractions at the expense of resolution.
The diffractions can also be diminished by decreasing the grid
spacing. Doubling the grid resolution increases the number of
computations by an order of magnitude. It can be argued that
the diffraction issue is a tradeoff between the desired accuracy
and computational cost. However, the size of fast accessible
computer memory is currently the dominant factor constrain-
ing 3-D forward modeling.

Syncline model

This example demonstrates the ability of the modeling algo-
rithm to simulate a zero-offset survey using the exploding re-
flector method (Loewenthal et al., 1976). The structure consists
of a truncated dipping interface which overlies a sharp syn-
cline. This structure was modeled by a 256 x 256 x 128 grid
with a grid spacing of 20 m in all three directions. The model
configuration and physical parameters are shown in Figure 12,
The density is constant, and computations use equation (3).
To initiate the forward modeling, the reflectors are exploded
at time t = 0. The wave field is propagated using half of the
acoustic velocity.

Figures 13a and 13b represent snapshots at time ¢ = 0 on
two perpendicular planes. Figure 13¢ shows the pressure field
on an xz plane at a later time, where the distortion of the
reflector’s shape can be noticed. The direct arrival from the
inclined surface can hardly be noticed, but the two crossing
events from the syncline edges are clearly represented. In this
type of modeling, amplitudes are not correctly represented.
Since the syncline structure does not change along the y-axis,
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FIG. 8. P-wave snapshots for dipping interface model. The position of each plane within the 3-D volume is shown at
the upper right corner. (a}{c) correspond to lower left, lower right, and upper shapshots, respectively.
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FiG. 9. Dipping interface model—time section along (a) the strike line and (b) the dip line. Events are direct and
reflected arrivals. Automatic gain control has been applied.
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FiG. 10. Dipping interface model—numerical and analytical
time histories. Numerical and analytical solutions are dashed
and solid lines, respectively.
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F1G. 13. Syncline model—P-wave snapshots for syncline model. The position of each plane with the 3-D volume is
shown at the upper right corner. (a}H{c) correspond to lower left, lower right, and upper snapshots, respectively.
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FiG. 14. Syncline model—time section along (a) the x-axis and (b) the y-axis. Automatic gain control has been applied.
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zx time sections, calculated far enough from the truncated
interface, will show events which can be modeled with 2-D
algorithms. The time section in Figure 14a is such an example.
The time section in Figure 14b was calculated along the y-axis
immediately above the syncline’s deepest extremity and con-
tains out-of-plane events. In this figure, the reflection from the
upper interface and the diffraction from the truncation edge
are annotated as A and B, respectively. C is an out-of-plane
event corresponding to reflection from the syncline wall. Event
D is the reflection from the syncline bottom and is broken due
to the truncation edge.

CONCLUSIONS

We have presented a 3-D forward modeling algorithm
based on a direct solution of the acoustic wave equation. The
feasibility of this algorithm has been demonstrated with an
implementation on a CRAY X-MP/48 system and an SSD.
For example, a model of 256 x 256 x 256 grid points and
1500 time steps (constant-density case) can be calculated
within 2 hours of elapsed or wall-clock time using four CPUs.
We believe that this algorithm may prove useful for seismic
interpretation, especially for structures for which ray-tracing
methods fail to give satisfactory results. Comparisons between
numerical and analytical solutions lead to the expectation that
the modeling algorithm will produce accurate results for more
complicated and realistic problems.

Based on the results of this study and the current state of
computer technology, we believe that the Fourier method is
most effective for 3-D modeling, since it requires fewer grid
points to obtain a specified accuracy. This point is especially
significant, since, for example, an increase of grid resolution by
a factor of two increases both data storage requirements and

the number of computations by an order of magnitude. Of
greater consequence is the possibility of not having enough
fast, accessible memory to model the original problem. The
availability of “unlimited” central memory or fast, accessible
secondary memory would necessitate our revisiting algorithm
implementation and perceived advantages and disadvantages
of all forward modeling techniques.

Acoustic forward modeling is a first step in the realistic
simulation of wave propagation in the earth. A more realistic
simulation can be achieved with 3-D elastic forward modeling
{Reshef et al., 1988, this issue).
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