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Introduction

The objective of seismic forward modeling can be stated as: “given an
assumed structure of the subsurface. predict what geophounes of a seismic
survey over that structure would record”. Seismic modeling is a valuable
tool for seismic interpretation as well as an essential ingredient in seismic
inversion algorithms.

All types of seismic forward modeling are based on some solution of a
governing wave equation. Presently one can distinguish between three main
types of forward modeling namely, analytical methods. geometrical optics
methods (Ray Tracing), and direct methods (e.g. finite differences, finite
elements, the Fourier method).

Analytical methods are based on closed form solutions of the govern-
ing wave equation. They are limited to simple structures because only
then closed form solutions exist. Because of their high accuracy they can
serve as a standard for testing other methods. For multilayer structures
the solutions often include integrals with singularities (e.g. the reflectivity
method). These integrals need to be carried out numerically with caution,
and in such a case the methods should be considered only semi analytical.

Geometrical optics methods are a high frequency approximation which
most commonly is based on the ray series. These methods are generally
very fast and effective for getting travel time information. However, they
do not always give correct amplitudes or explain non geometrical optics
phenomena (e.g. tunneling). For complicated structures or when many
multiples and converted phases need to be accounted for they can become
very cumbersome.

Direct methods are based on a direct solution of the equations of motion
after approximating the region of propagation by a numerical grid. Direct
methods usually do not have restrictions on material variability. In princi-
ple they can be very accurate when a sufficiently fine grid is used. However,
these methods are expensive, or equivalently, they possess a high frequency
limnit on resolution. Unlike the first two methods. direct methods produce
snapshots with ease. which can be an important aid in interpretation.

In the following we examine a numnber of direct methods which are cur-
rently used in seismology. In the first sections we introduce most of the
concepts through the simple example of the one dimensional acoustic wave
equation. Next the results will be generalized to acoustic and elastic wave
propagation in two and three dimensions. Finally we will discuss some new
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approaches for accurate and efficient time integration.

1. One dimensional acoustic wave propagation
1.1. The one dimenstonal acoustic wave equation

We consider the one dimensional acoustic wave equation for constant den-
sity:

1 2P %P

E T = 5 (L.L1)

where,  is a Cartesian coordinate, t is the time, ¢(x) is the acoustic velocity
and P is the pressure. The finite difference solution of (1.1.1) uses both
temporal and spatial discretizations. Let dx be the spatial grid size and
dt the time step size. For representing variables we adopt the notation:

P = P(x = xzo + jdz.t = ndi)
and

¢j = cle =z + jda), 3=0.....,N,—1
where N, is the number of grid points.

1.2. The finite difference approximation

The finite difference second derivative approximation is given by:

2 pn n n n
PP P, 2P 4+ P o)
Ox? dax? -

The justification for (1.2.1) can be seen through performing the derivative
in two stages:

apﬂtl/Q _ Pjn+1 - Pj” (1.2.2)
Ox dx ’ -
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and
aZPn 8P1"+1/2 _ 8P,"71/2
J dx oz 1.2.3
or? dz ’ (12.3)

For the second time derivative we use the same type of approximation:

o*pr Pt _apr 4 prt
55 = 5 (1.2.4)

A substitution of (1.2.1) and (1.2.4) into (1.1.1) and rearrangement of terms
finally yields the scheme:

2 142
pret = opr proty G4 [Pl — 2P} + Pl 4] 1.2.5)
i T j dg2 i+t i 7-1 (1.2.5)

This equation comprises an extrapolation where values at time ¢ = (n+1) dt
are obtained from values at times ndt and (n— 1) dt, previously calculated.
Boundary conditions at grid points j = 0 and j = N, — 1 need to be
specified.

1.8. Accuracy

We shall test the spatial derivative approximation for P = 1, z, z2. z3,...

Py PP
=1 1 =
Peo 1 — 2P+ P (j4+ 1) de —2jde+ (j— 1) de
= = =
dz? dz?
P =2 a1 — 2P+ P _ (J +1)?*da® - 25°da’® + (j — 1)* da?
) dax? dx?
=2= @(1' )
P = 48 Pl 2P+ P _ (j+1)3de® — 253 dz® + (5 — 1)% da?
’ da? dx?
2
. _ S 3
P Pry = 2P+ PP, _ U+ DAdat — 254 dat 4 (j — 1) da?
' dz? dz?
82
# (x*) (1.3.1)

da?
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Similar considerations apply to the time derivative approximation. The
overall accuracy of the scheme per time step is 3™ order. A smaller time
step however involves more time steps to reach a given time and because
of cumulated errors the total accuracy of the scheme is then only second
order. Thus, for example, for calculations up to a specified time, halving
the time step will improve accuracy by a factor of four.

The above considerations determine only the rate of convergence of the
scheme. The topic of accuracy for variable velocity and different boundary
conditions is more involved and beyond the scope of this presentation.
1.4. Stability and numerical dispersion

Assume ¢ = const. and try a travelling wave solution of the form: Pt =
expi(kj dr — wndt). The spatial derivative approximation yields,

2 pn n n n
0P Pr, —2P!+ Pl

TR 1o (1.4.1)
ik(74+1)dx _ ikjdx ik{(j—1)dx
— e(fiwndt) ekl 2em T e (142)
dz?
4 oy .
- _ e i el(k] der—wndt) [sin2 lid;L/Q]
x
Similarly,
02PJn —4 i(kjdz—wndt) 12
Ereale @-el Jarmwna '[sm wdt/?}
A substitution into (1.2.5) yields,
o intwdt2 = L sk dey2
Tage e /2= dg2z 2 T
or.
[cdt kdax
sinjwdt/2] = | — si
sin [w dt/2) - (lx} sin —
or,
r - / N 1.,.
w= —sin"*! cdt sin b da (1.4.3)
dt | dx 2

This equation which relates w = w(k) defines a dispersion relation. In a
dispersive medium the phase velocity is defined as: €, = w/k and the group

Setsmic numerical modeling 257

G

C

1.0+ a=1.0

0.8l
«a=08
423
a-02

0.6 -

041

0.2}

| 1 1 1 | 1
0 0.5 1.0 1.5 2.0 25 3.0
KDx

Fig. 1. Normalized phase velocity vs wavenumber for second order differencing
scheme.

velocity as: U; = dw/dk. Figure 1 plots the normalized phase velocity
versus wavenumber for different values of the parameter o = cdt/dz < 1.
For stability « must be less or equal to one because otherwise the r.h.s.
of (1.4.3) becomes greater than unity for the spatial Nyquist component
for which kdz = 7. When « = 1 then C, = w/k = dz/dt = ¢ and no
numerical dispersion exists. When a < 1 numerical dispersion is always
present.

When the velocity is variable, a different analysis is needed. This analysis
can be based on the evaluation of the eigenvalues of the discrete operator
9% /0x?. However, experience has taught us that for the magnitude of ve-
locity contrasts typically encountered in exploration Geophysics the above
results also can be used when c is replaced by the maximum velocity in the
grid cpax.

For kdx < 7/5 the dispersion is often considered sufficiently small. This
value corresponds to a wavelength of 10 grid points.

Example . Determine dt, dz for a problem of wave propagation in a region
with a maximum velocity Cyax of 4000 m/sec and a minimum velocity
Cmin of 1500 m/sec. The desired maximum frequency is 50 Hz.

Answer:
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Amin = = = 30 m,

where Apin is the shortest wavelength present. Therefore, dz &~ Ayin/10 =
3m and dt = dz/cmax = 3/4000 =~ 0.75msec.

1.5. Improving spatial accuracy with higher order schemes

With no loss of generality we can evaluate results at = 0. For the second
derivative approximation we only examine schemes with odd number of
points. We can then write:

0*P,
dx?
where [ + 1 is the number of weighting coefficients and we have already
used a symmetric form which guarantees that 9P/ 0z? =0 for Py = 2°

with odd . We now require that (1.5.1) be accurate for all polynomials
up to order 2{. We obtain:

Q’Ju)()Po +w1(P1+P_1)+"'+WI(P1+P,I) (151)

for P; =1 wo+ 2w twa+ -+ 2w =0
for P; =(j dz)? 2wy da® + dwo dz? + - + WP da®) = 2

for P} =(j dz)® 2wy dz?! + w2 da? + - F WP dz?) =0
(1.5.2)

We have [ + 1 linear equations for the unknowns: wgp, w1, ..., w;. With a
redefinition of the unknowns vg = wy, and v; = 2w; for i > 0 we get:

v+uvituv+ -+ =0
2

U1+4U2+"'+l2’l)l:'a‘x—2

v1+ 220 4+ P =0 (1.5.3)

The system can be written in matrix form:

11 1 ... 17T w 0

01 4 ... 12| |wn 2/ da?

A T : (1.5.4)
0 1 22 .. U ()
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The matrix in eq. (1.5.4) is known as the Vandermonde matrix (Hamming,
1978). It can be proven that the matrix is non singular and has a closed
form inverse. Denoting this inverse by T~! we can then write:

Vo 0
Uy 2/ dx?

= r-1 , (1.5.5)
Uz 0

This formula allows to obtain the coefficients for finite difference schemes of
any order. In the following, rather then use T—! we will solve 1.5.3 directly
for examples with a small .

Ezxample 1. 1 =2. We get from eq. (1.5.4):

o 1] = o]

from which we get vy = 2/dz?, vy = —2/d2? and therefore wy = vy =
—2/dx? and w; = v1/2 = 1/ dz?. The differencing scheme becomes:
P 1

972 W(P—l — 2Py + Pp)

which is the same scheme we used before.

Example 2 . 1 = 3. We get:

vg+ v +ve =0

vy + 4vy = )
v1 + 16vy =0
which gives:
v L 1
vy = —~—— and vy = .
2 6 dr? T 342 o
@ = Tgge e g
respectively, and
5

Vg =Wy = 575
2 du?
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Fig. 2. Phase velocity vs wavenumber for finite-difference schemes of different

orders.
The differencing scheme then becomes:

9% Py 1 5 4 1
= — —— — _ - - P P7
or? dax? 2PO + 3(P1 +Po) 12( 2+ Pa)

which is the fourth order differencing scheme.
A fourth order scheme in space and second order in time for solving the
acoustic wave equation for constant density then reads:

c2 dt?
n+1 __ n n—1 J
Py =Py = P S
5 n 4 n n 1 n n

Higher order finite difference schemes can be derived in the same way.
The question arises of what kind of imuprovement do higher order schemes

bring over the second order scheme which we have studied. The type

of numerical dispersion analysis done before could be carried out again
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yielding phase velocity versus wavenumber plots. Results of this type of
analysis arc shown in fig. 2. This plot shows that the fourth order scheme
brings about a significant improvement over the second order scheme and
that the sixth order scheme brings further improvement. However, beyond
the sixth order scheme the rate of improvement decreases considerably and
it becomes questionable whether the added computational effort with the
long derivative operator is worthwhile. Many researchers believe that 4th
order or 6" order approximations are optimal.

1.6. Acoustic wave equation with variable density

The acoustic wave equation for variable density in one spatial dimension
reads:

o (10PY _ 1 gp
dr \pdxr ) pc? o2

where p is the density (e.g. Kosloff and Baysal, 1982).

We now need a scheme for the spatial derivative term which includes the
density. There are many possibilities to achieve this goal but one alternative
which also works well in two and three dimensions is to use a two stage
approach. Denoting:

o (10P\"
Rl = —{-——) . 6.
7 Or (/)01’>j (16.1)

the scheme is as follows:
Stage 1. calculate
oP; P - PL
or 2dax

then multiply result by 1/p;;
Stage 2: calculate

no_ 1 1 aPI”‘F 1 1 OPJ"— 1

7 2dx Pi+1 or Pi-1 or
Stage 3: Perform time integration according to:

PJ."+1 =2P ~ PJ-'“l + /)j(}f (II‘QHJ”.
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It is interesting to compare the accuracy of this scheme with the accuracy of
the previous second order scheme for constant density. Assuming constant
density p; = po and velocity ¢; = ¢, stage 1 can be substituted into stage
2 to yield for RY :

Pr,— Pl Pl —PL,) 1

Ry = |12 2
POy 2dz 2dr | 2de
1 n n n
=12 [Plyy — 2P + Pl,) . (1.6.2)

This is the same spatial derivative approximation as in the constant density
case except that now it corresponds to a grid spacing of 2 dr instead of dz.
This means that the numerical dispersion will occur much earlier ( e.g. at
longer wavelengths) . This conclusion is not only limited to this case but
applies to many other examples where a first derivative approximation is
required. The staggered grid approach discussed in the next section offers
a solution for achieving equal accuracy with first derivative operators and
second derivative operators.

1.7. Staggered grids

The variable density scheme in the previous section can be significantly
improved when the first spatial derivatives are calculated between grid
points. The stages then run as follows:

Stage 1: calculate

J J J

PPy, Phy— P}
oz dz '

then multiply result by 1/p;41/2:
Stage 2: calculate

n_ L 1 aP],"H/Q_ 1 0P 07
7o dx [ pjyr2 O pj—1j2 Oz ’

Stage 3: Perform time integration.

When the density is constant a substitution of stage 1 into stage 2 gives
the constant density scheme. Several investigators have suggested using
staggered grids in two spatial dimensions for achieving the same type of
improvement (Vireaux, 1984, 1986; Levander, 1988). Figure 3 shows an
outline for a staggered grid for the acoustic wave equation in two dimen-
sions.
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Fig. 3. Staggered grid scheme for acoustic wave equation.

1.8. The Fourier method

The Fourier method attempts to achieve a highly accurate derivative ap-
proximation by using the derivative property of the Fourier transform.
Given a function f(z) and denoting its Fourier transform by f (k) with
k the wavenumber, the derivative property states that the transform of
df |0z is given by ikf(k). and likewise, the transform of 9% f/dx* is given
by —k?f (Bracewell, 1978). In the Fourier method f is calculated by the
FFT.

For example, given the acoustic wave equation for variable density, the
steps of the calculation run as follows:

Stage I: Calculate 9P} /Ox:

- - OPH
P! — FFT — P) — ik, P! — FFT! (TJ
X xr

Multiply the result by 1/p; to get (1/p;)(OP]/Or).
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Fig. 4. Circular diagrams for even and odd based FFT’s.

. n
Stage 2 Calculate R} = % (%%) j:

FFT! 2 (10_P>”

Stage 3 Perform time integration:

Pt =2Pf — Pl 4 pic d° R

Remarks . (a) The method is periodic. For example a wave impinging on
the left boundary of the grid will return from the right boundary.

(b) For first derivative approximation it is important to use odd based
FEFT's. This is because even transforms have a Nyquist component which
docs not possess the Hermetian property of the derivative (e.g. that a
derivative of an even function is odd, and vise versa). The reason for
this is as follows: When f(x) is real f(k) is Hermitian (i.e. its even part is
real and odd part is imaginary). For the discrete Fourier transform (DFT)
k is given by

2 (1.8.1)

b 2rv/N dx for v =0.1..... N-1
Yl 27N = v)/Nde for v =XE N1
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(for even N, (N + 1)/2 represents truncation to the closest integer). When
N is odd k, is an odd function of v in the periodic sense (e.g. f(v) =
—f(=v) and f(—v) = f(N —v)). Therefore ik, f(k,) is also Hermitian and
Jdf /Ox becomes real. When N is even k,, is again odd except for the Nyquist
frequency component K,y for which it is even. Therefore a multiplication
by iktnyqf (Knyq) will be imaginary-even which would result in an imaginary
0f/0x. Consequently, a complete and real derivative operator requires an
odd N. Figure 4 shows circular diagram plots which illustrate this point.

1.9. Numerical dispersion and stability

Consider again the constant density acoustic wave equation with constant
velocity ¢ and assume a solution of the form Pl = el(ky dr—wn dt) where k is
given by (1.8.1). For the Fourier spatial derivative approximation we get:

9? pPr
or?

— _k2 ei(kj dz—wn dt)

As with the finite-difference case the temporal approximation will give;

2 pn
o°P; 4

5 = I8 sin? WTdf eilkj dz—wn dt)
ar

A substitution in the wave equation yields:

2 . wdt
—sgin| — | =k
cdt 2

or:

This equation defines the numerical dispersion relation for the Fourier
method. The following conclusions can be drawn:

(a) When dt << 1, sin ! (kedt/2) &~ kedt/2 and w/k = ¢ meaning prac-
tically no dispersion (see fig. 5). Hence unlike with second order finite-
differences a decrease in time step size reduces the dispersion. Based on
the figure the criterion o = ¢dt/ dxr < 0.2 is often used for assuring both
stability and small dispersion.

(b) The argument of the inverse sine must be smaller than one. Hence
the stability limit Amax(cdt/2) < 1. As kpax = w/da therefore a =
(cdt/dx) < 2/7.
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Fig. 5. Phase velocity versus wavenumber for Fourier method.

(¢) From the figure it appears that with a sufficiently small d¢ the numerical
dispersion can be avoided. In that case the modeling will be accurate up to
the spatial Nyquist frequency which corresponds to a spatial wavelength of
two grid points. This is in contrast to the figure of ten grids per wavelength
for second order differencing. Though in reality the situation is not quite so
ideal, the Fourier method does indeed require much fewer points to achieve
the same accuracy as with finite-differences. On the other hand the Fourier
method requires more calculation per grid point. It is therefore a subject
of debate which method is more economical. The reduction in number of
grid points becomes more significant in 2D and 3D.

1.10. Fourier method without FFT

The Fourier method can be applied directly in the space domain by using
the convolution property of the Fourier transform. Given two functions
f(x) and g(z) we denote their transforms by f and §. The convolutional
property then states that the transform of the convolution f * ¢ is given
by the simple multiplication f[/ (e.g. Bracewell, 1978). Considering for
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example the second derivative approximation we can write:
>’f < A ~1
— = (k> f) = (—k*? * f.
o (~#?)
When f is discrete the convolution is to be understood in the cyclic sense.
oy 1 . . . o
(—kz ) denotes the inverse discrete Fourier transform of —k?. It is given

by:
2
1 o \2 L(L+1)

— = — 1.10.1

( k )0 (Ndx) 3 ( )
and

_ 1 2r \? cos(’r—’f)
S AN g 0 1.10.2
4 =5 (wa) Oy o (L102)

with N = 2L 4+ 1 ( Kosloft and Kessler, 1987 ). These coefficients can be
applied directly to P[' as with finite-differences. The result obviously will
be the same as with the FFT and it is only a question of economics which
method is better. Here however, the derivative operator is extremely long
and the usual method of using the FFT is preferable. There exists however
a possibility of using shorter smoothed versions of (1.10.1) as spatial do-
main derivative operators (Mora, 1988). The topic of design of improved

derivative operators is discussed later.
1.11. Finite differences using the FFT

The finite-differences derivative approximation consists of a convolution.
We can write,
d’f
— =Wx f. 1.11.1
a2 f ( )

For example, with second order finite-differences

1 -2 1
W=|—-—.55.+5-
(dw2 da? dx2>

or with fourth order finite-differences

-1 4 -5 4 -1
B (12 dz?’ 3de?’ 2dx?’ 3dx?’ 12(1:1;2> ‘
The coefficients for the second and fourth order finite-difference operator as
well as for the Fourier method are plotted in fig. . 6. Using again the convo-
lution property we could calculate the second derivative through the multi-
plication W f in the spatial frequency domain. For example. for the second
order differencing approximation we have seen that W, = -3 2 %ﬁ

T sin’
where k, is the wavenumber of the FFT. The resulting FD scheme will

have periodic boundary conditions.
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Fourier Coeficients

4™ Order Coeficients

2% Order Coeficients /

Fig. 6. Operator weights.

This approach, though interesting, is usually less efficient than applying
the difference operator directly in the space domain. This is because usually
the difference operator is not too long. However the insight gained by
the last two alternatives will become useful for the construction of hybrid
operators.

1.12. A hybrid method

As shown above the finite-differences derivative operators are accurate for
the long wavelengths but fail to give satisfactory results for shorter wave-
lengths. The use of higher order schemes did not resolve the problem
completely. On the other hand the derivative approximation can be recog-
nized as a convolutional operation, and one may seek other linear operators
which produce better results.

The convolutional approximation is of the type:

d?fo
02 =wofo twilfi + fo1) +walfo+ foo) +ws(fs + fo3)
+ ot wlfi + fo) (L12.1)
where wp. w1, ..., wy need to be determined. This symmetric form assures

the correctness of the derivative approximation for odd functions.
We have obtained a successful hybrid scheme by requiring that (1.12.1)
be exact for the functions f = 1, 22, 2! and that it be exact in a least
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squares sense for the functions cos k. o« = 0.....M with M > [. The
resulting system reads:

wo + 2wy cos kg + 2wa cos 2kg + -+ 4 2wy coslhky = —]afg

Wi + 2w cosky + 2wo cos2ky + -+ - 4+ 2wy coslky = fkf

war + 2was cos kpr + 2wq cos 2k + ...+ 2wy coslhy = —k?\,,

with 0 < ky < 7/ dx. The correctness for f = 1, 2%, 2% ete. was introduced
through Lagrange multipliers. The constraints are given by:

wo+2wy+ -+ 2w =0
2w + 8ws 4 - -+ + 202w =2

Attempts to get weights for the first derivative approximation were much
less successful unless one uses staggered schemes in which first derivatives
are calculated between grid points.

A second alternative for obtaining the coefficients of a derivative approx-
imation is to retain the first few terms of a smoothed second derivative of
a spike based on the Fourier method (Mora, 1988).

1.13. The finite-element method

Unlike the methods which we have already discussed, the finite-element
technique originates from an integral statement which can either be a vari-
ational principle or a Galerkin method. The end result is again a convolu-
tional spatial operator which in many cases can be shown to be equivalent
to operators obtained by finite-differences. In the following we outline the
finite-element method and show the equivalence between finite-elements
and finite-differences in 1 dimension.

1.13.1. Notation and spatial discretization

With the finite-element method the variables are evaluated by interpolation
from nodal values. We consider a second order isoparametric method (e.g.
Zienkiewitez, 1977). The interpolation can be written as:

pla;) = {®(x,)} (P}, i=1,....D, (1.13.1)
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where D is the number of spatial dimensions, {P} is a column vector
T . .

of the values of p(r;) at the nodes, and {®}" is a row vector of spatial

interpolation functions. For example in one spatial dimension:

T — Tn_1
— for Tpq1 <2< Tp
{0} P (1.13.2)
= Tpnyl — T do.
" T fora, <o < dayy
Int1 — T .
0 otherwise.

Rather than calculate the interpolation functions directly as in (1.13.2), it
is easier, in particular in two or three dimensions, to map each element into
a simplified coordinate system which we term the Z system. Each element
has its individual mapping and local numbering scheme according to the
convention in fig. 7. The interpolation functions within an element in this
new coordinate system are given by:

D
1
Gnlzi) = _DH 1+Z1Zn n:ls‘--~2Ds (1133)

where Z' = £1 (fig. 7), and the interpolation reads

Zcbn )P, (1.13.4)

where P, is the pressure at the n'" node surrounding the element. For
example, in two dimensions,

ZL =1 22 =1 Z} =-1 7} =1
Z} =-1 23 =-1 23 =1 2z} =1

In one dimension the interpolation reads:
1 1 1 2
p(Z1):3(1—21)P +§(1+Z1)P s

and it can be seen that the interpolation requirements p(z; = zZly = P,
and p(z1 = Z}) = P? are satisfied.
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Fig. 7. Finite-element mapping scheme.

In two dimensions the interpolation reads:

E

p(z1,22) =) di(21,22) P
=1
i[l—zl 1—22)P1 ( +Zl)(1—22)P2
F(1 = 21)(1 4 22) P* + (1 + 21)(1 + 22) P¥] (1.13.5)

The local interpolation functions are also used for the mapping between
the global X system and the local Z system with an element. Particularly,

=Y ulz)X] (1.13.6)

n=1

where X' are the coordinates of the nodes of the element under consider-
ation. By differentiation of (1.13.4) and (1.13.6) we also get:

8]) a(bn Zk
= —p" 1.13.7
Ozm ,Zl Dz ( )
and,
e, X~ Dgulze)
£q n\Zk
—_— = — X, 1.13.8
azm azm ' ( )



272 D. Kosloff and D. Kessler

The entries of dx;/0zp, allow the calculation of Jz,/dx; by a matrix inver-
sion. The values of Jp/dz; within each element can now be evaluated by
the chain rule:

ap dp Oz )
—— (1)) = — —, (1.13.9)
().’I‘,‘ le 0.’17{

where a repeated index implies summation over the number of spatial di-
mensions. We now have all the tools for evaluating quantities within a
given clement. When passing to a different element a new mapping and
local coordinate system are used.

1.13.2. Variational principle
We (,onslder the acoustic wave equation with variable density:

o (1 dp 1
- = —p+s. 1.13.10
or; (p(‘);r,i> p(‘2p+ ’ ( )

Again repeated indices imply summation over the number of spatial di-
mensions. We are interested in the solution within a volume V' bounded
by a surface S (in 2D we actually mean within an area bounded by a line).
The latter is divided into S,. the portion on which pressure boundary con-
ditions are specified, and Sg,. the portion on which normal accelerations
are given (or pressure flux).

We consider a small pressure variation 6p which is consistent with all
boundary conditions. and therefore vanishes on S,. The variational prin-
ciple equivalent to (1.13.10) is obtained by premultiplying it by ép and
integrating over the volume V. An application of Gauss's theorem then
yields:

/ 1 0bp Op

1
dV = | sp—pdV dps dV
p Ox; Ox; /v p/)(tgp( * /, pat

.

where n is the normal to the surface S. The numerical approximation
to (1.13.11) is obtained by considering ouly variations ép according to the
interpolation (1.13.1),

, (1.13.11)
W P ox

bp={®} {oP) = (6P} {®}.
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Substitution into (1.13.11) yields,
| [ 190 1 .
{6P} - V4 | —5{@tpdV + [ {#}5dV
v po v pe JV

—/ dp n; dS} (1.13.12)
S

ap ,0 L

Since {6 P} is arbitrary, the expression within the square brackets must be
identically zero. Expressing Op/dx; and p by the interpolation according to
(1.13.9), (1.13.5), (1.13.6) and (1.13.1) respectively gives a sct of ordinary
differential equations for the nodal pressures {P}:

K {P( >}+M{13} +{S}=o0. (1.13.13)

where K the stiffness matrix, M the mass matrix, and {S} the generalized
source are respectively given by,

[ 1a{@)o{s}”
K_/Vp o on (1.13.14)
M_/V—pc2 (@) (&7 av. (1.13.15)

18p

(1.13.16)

(s1= [ (@sav- [ e

The integrals in eqs. (1.13.14)7(1.13.16) can be evaluated numerically. The
volume integrals are carried out element by element each time using the
local Z system according to the principle:

/ Z/ 1Jdzy ... .dzp

elements
where [-] denotes the quantity to be integrated and J is the Jacobian
|021/8z,|. The integrations can conveniently be evaluated by second order
Gaussian quadrature. In actual calculations the mass matrix M is often
replaced by the diagonal lumped mass matrix M in which each entry is
equal to the sum of all entries in the same row of M. With this matrix,
equation (1.13.13) can be rewritten as:

{ﬁ}:_M [KA{P{)} +{S(t)}]. (1.13.17)
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This equation can be integrated by standard techniques such as second
order temporal differencing. The source vector {S(¢)} is assumed known
while the solution yields the nodal pressures {P(t)}.

1.13.8. Remarks
(a) The stiffness matrix in one dimension

We consider wave propagation in a medium with uniform properties pg, cg
and a discretization on a uniform grid with spacing dz. Considering a
particular element e we get by (1.13.3):

1-=2
1(21) = 5 -
142
ba(21) = ——
also,
Ot _ _1
821 - 2
902 _ 1
821 - 2.
Since
9 _mo _ 20
dr  Or 0z dx dzn
then,
06 _ _ 1
or  dx
o6, _ 1
dr  dx’
Since K =37 ... K, the contribution K¢ to K in the local numbering

system becomes:

e __ €
Kll - K22

[Omonr,
v, 0z Ox py ~  podx’

and,

e a¢)1 8@2 1 1
K=Ky = [ 22001, 1
12 2 /v dr dr pg v podx’
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when the stiffness matrix is summed. K7; and K$, contribute to the diag-
onal entries of K while K¢, and K§; contribute to the entries above and
below the diagonal respectively. The stiffness matrix is then given by:

The first and last rows are determined by the boundary conditions. This
matrix can be identified as the second order differencing operator multiplied
by —dz/pg. Finite elements and second order differencing are therefore
identical. When the parameters p and ¢ are variable it can be shown that
the stiffness matrix is equivalent to the staggered finite-difference scheme
of section (1.7).

(b) Alternative Formulation Of K {P}
It is sometimes more economical not store the stiffness matrix but rather
evaluate K {P} implicitly. By (1.13.12) and (1.13.14) we see that:

10
v, p Oz

{R}=K{P}= )

elements

9p
P} —dV 1.13.18
(@) ;- (113.18)
Given a nodal vector { P} the evaluation runs as follows:
(1) For a given element e evaluate

Op o @821
dr; Oz Ox;

at the quadrature points.
(2) Multiply the results by

1 0 1 8 le
=-— ¢
{#} p 0z e} o,

p O

at the quadrature points. Only the entries of {@} which correspond to
nodes surrounding the element e need to be considered hecause all others
are zero.



276 D. Kosloff and D. Kessler

(3) Perform iutegration according to:

adp 10
/;07{45} dv = Z

quad

P y.op,

011

where two point quadrature is assumed (with weights of unity).

(4) Cumulate values of {R} for the entries corresponding to the nodes
surrounding the element e.
(¢) Evaluation of K {P} in 2D using one point quadrature

Paradoxically using a one quadrature point at the center of the element
instead of four (e.g. using the trapezoidal rule of integration) can improve
results in certain situations once provision is given for hourglass modes
(Kosloff and Frazier, 1977). Obviously when the stiffness matrix is not
stored this results in a large savings in computer time. Interestingly, it can
be shown that for a uniform square grid one quadrature integration yields
an operator which is equivalent to a finite-difference staggered scheme. For
example

1 ap

dv
,0(911

() -

v, 8T1
is identical to within a constant to the differencing scheme:
(1) Calculate at the element centers,
dp 1
it = o (Piyq sy + Py i =P i1 — Py
dr i+1/2 j+1/2 2dx (Frer 54 R R )

(2) Multiply the result by l/pi+1/2j+1/2‘
(3) Calculate at the nodes.

o (1 0Op 1
an \ponr ), = 2az (P + Papioe

=P 1y2j412 — Pi71/2j*1/2)
Similarly

/ drz{ }1311 v

can be shown to be equivalent to

9 (1 dp
Ouo \ p Oxs
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by differencing.

In conclusion although finite-element appears at first different from finite-
differences. a closer look shows that the methods are very similar at least
for the situations encountered in modeling wave propagation in the Earth.
The main advantage of finite-elements is the flexibility in handling bound-
ary conditions and irregular structures. These advantages are less impor-
tant in exploration Geophysics. Experience has shown that it is extremely
difficult to come up with good grid generators to grid around complicated
structures and heterogeneities. It is thercfore still advantageous to use
"stair stepping” as with finite-differences and the Fourier method. Eco-
nomically finite- elements are usually slower or at least not faster than
finite differences.

The above formulation was for a second order spatial scheme. The ex-
tension to higher order schemes for dynamic codes is not trivial because of
the lumping of the mass matrix which may reduce the accuracy.

2. Two dimensional and three dimensional acoustic
forward modeling by the Fourier method

2.1. The multi dimensional acoustic wave equation and the Fourier solution
method

The main concepts of 2D and 3D Fourier method solutions of the acoustic
wave equation are not very different from those of the 1D solution previ-
ously introduced. The point of departure is the acoustic wave equation
which in two dimensions reads,

o (10P o (10P 1
9 (19, 9 2.1.1
Ou (/’ 01>>+8y (ﬂ 3@/) pc’ s (214

where r and y are respectively the horizontal and vertical coordinates. In
three dimensions the equation reads,

o (10P o (10P a (10P
e (o ey [ - Llpys 2.1.2
Oz (pf?«'ﬂ)Jr@y </)0y>+0 <ﬂ02> PER (212)

where now z denotes the vertical coordinate. As in the 1D case the Fourier
method includes both temporal and spatial discretizations. For example
in three dimensions P"(i,j.k) = P(z = idz.y = jdy. 2z = kdz.t = ndi),

and;
o (10 g (19 g (10
i (D (YO 9 (LI O "(21.3
(0.J. k) <(’):r, </)8:1r>+(9y <p@y>+8z (/)az>>P ( )
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and,
S™i,j k)= Sz =ide,y = jdy,z = kdz,t = ndt).
The derivative terms in R" are calculated using FFT’s along lines in the

x.y. and z directions. First (9/0z) (%%) is calculated along z lines,

o (198 o (Lo . o lines : e
then By (p ay) and (p a:) are calculated along y lines and z lines re-

spectively. Time integration is carried out again by temporal differencing
according to:

PN g k) =2P" (i, 4, k) — P"7Y(i, 4. k) 4+ 2pde® (R™(i, j, k)
=5"(i.j. k)

2.2. Stability and numerical dispersion

Assuming constant p and ¢ with no source term we try a solution:
P(l,7) = expli(k,ldz + kyj dy — wndt)], for two dimensional propaga-
tion.
A substitution in (2.1.1) yields,

9 (10P"\ 0 (10P") _
Jx \ p Ox oy \p Oy |

1
- (k2 + ki) expli(kyldz + kyj dy — wndt)] (2.2.1)
and,
o*pr 4 wdt
o T sin? WT expli(k.ldz + kyj dy — wn dt)],

Together these equations give the dispersion relation,

An important feature is that the dispersion is isotropic (unlike with many
finite-difference schemes). The stability region is defined by

o edt
A%+k§7 <1
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The stability limit is for £ = 7/ de and k}'** = m/dy. Therefore

[

1,1 < 2
=) edt < 2
dz? = dy? T

For dzr = dy the stable region is o = cdt/dz < v/2/7 as compared to 2/x
for 1D. A similar analysis for 3D would give 2v/3/37.

2.8. Problem design

For illustration we present the main steps in preparing a numerical simu-
lation for a typical problem in exploration geophysics. The steps run as
follows:

1. Determine the size of the region to be modeled (e.g. 5 Km * 3 Km), the
maximum and minimum velocities in the region ( for example 4000 m/s
and 2000 m/s) and the highest frequency fmax which will be needed
(e.g. 50 Hz). Determine the final time needed (e.g. 3 sec).

2. Calculate the grid size by dr = Apnin/2 = Cmin/2fmax ( here
2000/(2 - 50) = 20m) where Ay, is the shortest wave which can be
propagated without aliasing.

3. Use cpax to determine the time step size according to ¢pax dt/ dz < 0.2
(here dt < 0.2-20/4000 = 1-1072 sec).

4. Run the problem for the required number of time steps tpax/ dt.

The source time history should be chosen as a band limited wavelet (e.g.

a Ricker wavelet). The results of calculations are usually given in the form

of snapshots at selected times and time sections along selected lines in the

grid.

2.4. Different types of wave equations

Depending on the application there are a number of different wave equa-
tions which can be used for acoustic modeling. These include the variable
density wave equation, the constant density wave equation, the nonreflect-
ing wave equation and the one way wave equation of Gazdag (1981).

The variable density wave equation for two and three dimensions is given
by (2.1.1) and (2.1.2) respectively. When the density p in (2.1.1) or (2.1.2)
is constant one obtains the constant density wave equatious given by,

2P 9’ 1 9P
. _ 1 941
2 T or T A on (24.1)
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or in three dimensions,

0?P N 0°P N o*P 1 0*P

or2 oy 022 2 o2
In actual applications equations (2.1.1) and (2.4.1) (or (2.1.2) and (2.4.2)
in 3D) give identical travel times and critical reflection angles. The solu-
tions will differ however in amplitude values when the density is variable.
The non reflecting wave equation can be derived from (2.1.1) or (2.1.2)
by assuming constant impedance pc = «. The resulting equation in 2D is
given by:

(2.4.2)

o ( OP 8 ( 0P 16°P
. =2 2.4.
Oz <C 3;1:) * Ay (C 8y> c Ot? (24.3)

With this equation very little energy is reflected from a velocity contrast
(for normal incidence the reflection coefficient is zero) (Baysal et al., 1934).
The equation is useful for normal incidence modeling where it is desirable
to avoid multiple reflections.

Finally the one wave equation in 2D (Gazdag, 1981) is given by:

o »\? 1oP
25t a3 P=-—
ox?2  Oy? e Ot

where the square root derivative operator is to be understood in the sense,

1/2

82 02 . 2 oy 1/2
<W + a7 — isgnky (ki + ky)

This equation allows energy to propagate only upward (or downward de-

pending on the sign choice). Like the nonreflecting wave equation it is

useful for normal incidence modeling.

2.5. Exploding reflector concept

A zero offset seismic section (or CDP stacked section) is a result of many
experiments (shots), and therefore would seem to require many runs to
produce. The exploding reflector concept allows to obtain a section which
approximates a zero offset section in one single run.

A source proportional to the reflection coefficients is placed on the in-
terfaces and is initiated at time zero. All the velocities for the calculation
must be halved in order to get correct arrival times.

2.6. Free surface
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Fig. 8. Free surface implementation for Fourier method.

The free surface boundary condition on the Earth’s surface (P = 0 at
y = 0 for 2D) appears at first difficult to achieve with the Fourier method
which is periodic in all directions. However, we found that by including
a wide zone above the mesh (or below because of periodicity) with zero
velocity (fig. 8), this boundary condition can be effected with very high
accuracy (in the acoustic case). The width of the zone should be about
the same as the region of interest (e.g. FFT's in the vertical dimension are
doubled in length). Computationaly the data need not be stored in region
l3. Horizontal derivatives need to be calculated only in region [;. For the
vertical derivatives [, zeros are added to the pressure before calculation of
the derivatives. For the variable density case (or nonreflecting equatfon)
the value of the density in the region Iy is taken to be equal to the value
at the surface (y = 0).

2.7. Absorbing boundary conditions

In order to approximate the Earth correctly, it is important to eliminate
reflections or wraparound from the boundaries of the mesh. For finite-
differences Clayton and Enquist (1977) have shown that a one way wave
equation could be used along the boundaries of the mesh, thus preventing
energy from reflecting back into the grid. However, for the Fourier method
which is periodic and global it is not clear that such a procedure would
work.

A different approach was suggested by Cerjan et al. (1985). and Kosloff
and Kosloftf (1986). This method includes an absorbing strip along the
boundaries of the numerical mesh. At the end of each time step the values
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Fig. 9. Absorbing regions.

of P" and P! in the strip are multiplied by a reduction factor which is
slightly less than one (usually the values are about 0.92 on the boundaries
and increase slowly to 1). The width of the strip is on the order of fifteen
grid points (fig. 9).

This approach can be justified on more solid grounds as follows (Kosloff
and Kosloff, 1986). Considering for example the variable density acoustic
wave equation (2.1.1), it can be written as a system of coupled equations
according to,

ailvl=1a ol lv] 5] 21

where

5" = pc?S  and

A = pc? E 1_8_. +g<l£)>
- e Or \ p Oz Oy \ p Oy

An absorbing system then becomes,

olpP -y 1 P 0

- = . 2.7.2

ale]= 17 ] 15 212
The elimination procedure can be viewed as solving (2.7.2) by a splitting

of the solution into two stages. The first stage consists of propagating the
solution without absorbtion. In the second stage the system

wlv]=17 5]
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is solved by a first order differencing scheme

o) =[] ] =0mmm 7]

The reduction factor is thus equal to (1 — ~ d¢).

The reason for the success of the method can be seen by writing (2.7.2)
again as a single equation. For constant density without a source term, a
substitution of the first line of (2.7.2) into the second gives,

0°P  , (0°P &P or

For constant v this equation has solution of the type

P(x,t) =Afi(nix + noy — ct) exp[—yx/]
+ B fa(niz + nby + ct) exp[—vyz/c]

where n? +n3 =nf? + n = 1.

This solution has the form of a traveling wave without dispersion but
whose amplitude decreases with distance at a frequency independent rate
v/c. A travelling pulse will thus diminish in amplitude without a change
of shape. When v is variable, the effectiveness of the absorbing boundary
can be evaluated a priori by using solutions to (2.7.3) by the propagator
matrix method (Kosloff and Kosloff, 1986).

2.8. Implementation of a 3D solution scheme

With the current state of computer technology 3D simulations for reflection
seismology can be realistically carried out only on the largest supercomput-
ers. The storage requirements may yet be even more demanding because
a typical problem would need on the order of gegabytes of active storage.
When implementing a 3D algorithm one cannot avoid being well aware of
the structure of the computer being used. In the following sections we
describe an implementation on a vector computer with multiple CPU’s.

2.9. The solution scheme

The 3D solution algorithm includes two parts, namely the calculation of
spatial derivatives and the time integration. For example, for the variable
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density acoustic wave equation the spatial derivatives are calculated along
x, y and z lines respectively according to:

o (10P" g (10P" 0 (10P"
L | == _ - — 2.9.1
R 0;r<p0;r)+8y<p0y>+8z<p8z> (29.1)

whereas the time integration is performed according to:

Pl 2 pnelfz 4 20 (R - ST (29.2)
and,
Pn+1 — pn + (1tP7I'+1/2.

The implementation of the solution algorithm utilized both vectorization
and parallelism. Vectorization uses pipelining for arithmetic operations.
An operation is broken into smaller stages and when a stage is completed for
one set of variables, the next set of variables are passed to this stage without
waiting for the whole operation to be completed for the first variables. The
following is an example of a Fortran loop which is vectorizable:

DO 1 I=1,200
A(I) = A(I) + B(I) * D(I)
1 CONTINUE

All supercomputers as well as array processors use vectorization.

Parallelism is the ability to do operations in parallel either within a CPU
(multiple function units) or between different CPU’s. Parallelism in the
current algorithm was done through multitasking where a job can be split
into tasks which are picked up consecutively by CPU’s which are available.
An example of loops which are both vectorizable and multitaskable is,

DO 1 J=1,20

DO 1 I=1,100

ACT,J) = A(T,J) * A(T,0) + C
1 CONTINUE

The inner loop is vectorizable while the outer loop consists of 20 tasks.
A second factor which needed to be counsidered is storage management.
For a typical 3D problem the size of active storage may be larger than
the physical memory of the computer. Therefore an efficient scheme was
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needed for transferring data back and forth between physical memory and
a larger external storage device.

The evaluation of R™ in (2.1.3) requires calculation of derivatives in the
X.Y and Z directions respectively. The calculations were carried out by
consecutively bringing in groups of data planes of the 3D grid from the
external storage device into physical memory, performing the derivative
calculations and returning the data back into the external storage device.
In designing the solution algorithm we used two types of data accesses,
namely along X — Z planes and along Y — Z planes. Calculations on
X — Z planes include the following:

(1) 9 (1opm +g 1op"
dx \ p Ox Oz \p 0z

(2) time integration n—n+1
o [1oprt!

SN G vl
dr \p Ox

Calculations on Y — Z planes include:

o (10P"'\ 9 (10pP"!
M ()

dy \p Oy Oz \p 0z
(2) time integration n+l-n+2

0 18P"+2
3 (- )
Oy \p 0Oy

In the calculations vectorization is achieved within data planes whereas
parallelism is achieved between planes.

In order to reduce the number of I/O requests when accessing both X — 7
and Y — Z planes, we adopted a special pencil shape nodal numbering
scheme (fig. 10). A reflection will show that this type of scheme will
require fewer requests to transfer a layer of Y — Z planes from/to the
external storage device into or from physical memory than with the natural
numbering scheme in which points are labeled consecutively in the order
of the X, Y and Z directions respectively ( e.g. the number of pencils in
the Y directions versus the number of points in the Y direction).
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Pencil Structure

Fig. 10. Pencil data structure for 3D acoustic wave equation.

3. Two and three dimensional elastic forward modeling
by the Fourier method

3.1. Momentum conservation and stress—strain relation for an isotropic
elastic solid

The elastic forward modeling is based on a direct solution of the equations
of momentum conservation combined with the stress—strain relations for a
linear isotropic elastic solid undergoing infinitesimal deformation.

Considering two dimensions first, the equations of momentum conserva-’

tion are given by:

00pr 004y

004y Doy, o
e pUy, + fy (3.1.1)

where U, and U, respectively denote the horizontal and vertical displace-
ment components, .., g, and Ozy denote the stress components, p is the
density and f, and f, are the body forces. The displacements are related
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to the strains by:

o = oU,
xrr — 81‘
_ 8Uy
Cyy = Ay
1 /00U, 0U,
Ery = 5 ( 3y + E) (3.1.2)

where €., ey, ez, are the strain components. The stress -strain relation
for an isotropic solid is given by:

Orz = (A4 2p)eas + Aeyy

Tyy = Nezz + (A4 2p)ey,y,

Oay = 2[4€sy. (3.1.3)
where 0.5, 0y and o,y are the stresses and A, u are the rigidity and shear

modulus respectively. In 3D the equations of momentum conservation are
given by:

0042  00yy 00y,
= + +

U, 1
P Or Jy 0z +
s O0gy 0oy, 0oy,
PUy = Or + Oy + 0z 1y
= a Tz z zz
piy, = 00az | 00us | D02z o (3.1.4)

oz Oy Oz

where f., f,, f. are again the body forces.
The strains are related to the displacements by:

. _oU,
I"l‘_az‘
ovU,
eyy:wjy’
0
22_82
L 1[0 o,
Y2\ gy or
L _1(ou. ou.
R I W, 79 or
1 /oU, OU,
> o= - | =X . 1.5
Cy2 2((’)z+0y> (3.0.5)
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The stress strain relations are given by:

(€re +eyy +€22) + 2005,
(xr + €yy +€22) + 2uey,
(6xr + €yy +€:2) + 2pe,,
Hezy

HECz 2

1 |

i |

A
A
A
2
2
24

i |

(3.1.6)

where A and p are again the Lamé constants.

The numerical algorithm solves eqgs. (3.1.1)-(3.1.3) (2D) or eqgs. (3.1.4)—-
(3.1.6) (3D). There is also a possibility of solving instead the vector wave
equation for the displacements given by:

A+ )V(VU) 4+ uV(VU) = pV?U + f.

However this equation applies only when the material parameters are con-
stant. Moreover when the terms with derivatives of the material parameters
are included in the equation, the overall computational effort will not be
less than with the approach adopted in this study. Furthermore, having
the rheological relations separate as in (3.1.3) or (3.1.6) allows for substi-
tutions of other more detailed rheologies without affecting the amount of
computation considerably.

3.2. Solution algorithm
Denoting Ul = U,(x,y,t = ndt) etc., the calculations in a single time step

for 2D include the following:
(1) Calculate:

no__ 8UIL
Crx = 0.L
€y = 80&

Y

and

L (oup oy
Y92\ 9y Ox

by the Fourier method.
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(2) Calculate:

= (A +2u)ey, + Aey,
yy = Aey, + (A + 2u)ey,
fy = 2,1L€Iy

by a multiplication loop.
(3) Calculate:

.. 1 /Oc™ oo™
Ur = = T Ty _ fn
’ P< de " By fx)
. 1 (0o, o)
Ur = = Ty Yy _ pn
Yoop < g oy fy) "

using the Fourier method.
(4) Integrate in time:

Urtiz = pgn-42 4 qt. g7
n+1/2 __ n—1/2 n
Upttt =yt 4 dt- U

and,

Un+1 _ Un + dt- Un+1/2
Un+1 Un+ dt - Un+1/2

Similar steps are also used for 3D wave propagation.
3.3. Source types

The elastic forward modeling algorithm allows for the introduction of dif-
ferent kinds of seismic sources. We implemented three types namely a di-
rectional force, a pressure force and a shear source. All sources used are of
the separable type f(x,t) = S(x)h(t) where the vector S(z) is a localized
function of the position vector @, and h(t) is the source time history.

Directional force . A directional force vector has components of the type
fi(x,t) = a(x)b;m h(t) where m is the source direction and a(zx) is a local-
ized function around the source location (can be also §(z — xy) with xo
the source coordinate).
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Pressure source . A pressure source is of the form f; = 0¢/0z, where the
potential ¢ is of the form ¢(x) = a(x)h(t).

a(x) is a localized function (usually exp[—a((x — xo) - (x — xo)] ). This
source generates only P waves.

The derivatives must be calculated by the Fourier method and not ana-
lytically to assure numerical strain compatibility (Kosloff et al., 1984).

Shear source . A shear source is of the form f = curl Y, with Y a vector
potential. In 2D Y = (0,0,Y) with Y(z,y,t) = a(x,y)h(t), where a(z,y)
is the same as for the pressure source. This source generates only S waves.

3.4. Stability and numerical dispersion

We examine the two dimensional case for homogeneous material properties
and without sources. We first try the P wave solution:

(27) = (ke ) o+ by = onaey o

Yy

This solution represents a plane wave traveling in the ( k,, k&, ) direction
polarized in the direction of propagation. A second order differencing in
time yields,

o = Kol 2 @8 arbyyonan _ 2P G o wdt g o)

az g age "t Ty e
. _ky4:0 .2 W dt i(kyr+kyy—wndt) ‘4/) . g W dt n
pUy = a2 sin T eltf vY = W sin TUy (343)

The strains corresponding to eq. (3.4.1) are given by,

T
o ouU; — Lik2 eilkeath,y—wn dt)
e Oz x

n
en _ aUy :+ik2 ei(kl.x-{»k:yyfwndt)
o By y

and,

n _1<8U:f +6U;f

Cay = = +ik,k, ei(kTI‘Hny*wndt)
xry 2 ay 8]‘ > + rhy

Hence the stresses become,

Ore = (A4 2p)ece + Ay, = [IA + 2p)k] + iIAR2] elherthoy—wndt)
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Ty = A, + (A 2u)el = [IART + 1A + 2p)k]] e rthoymwndy

and,

Oy = 2uey, = iQ;Lkayei(k*’T*k“y*“’" ) (3.4.4)

Based on these values, the evaluation of the left hand side of the equations
of conservation of momentum gives,

don, ol -
—zz = —1(A+2 ]{73 /\kaZ Jilkyatkyy—wndt)
- 2/1,]1 k2 ei(k.x-r-‘rkyyfwn dt)
Ty
= —(A+2p) (K + K))UL (3.4.5)
Similarly:

9o dayy 2 12

8.17y By =—(A+2u) (ks + kU
In order to satisfy the equations of momentum conservation (3.1.1). we
must have,

4p . S wdt
(A4 2u) (k2 + Ai) = a2 sin? = (3.4.6)
or
2 wdt
2 11/2 _ p
-+ k = ——sin —
A AT

Where V,, = /(A + 21)/p is the P wave velocity. This is the same disper-
sion relation as in the acoustic case. Thercfore all the conclusions regarding
stability and numerical dispersion will remain the same as in that case. A
similar calculation for an S wave solution,

Ur _ _ky S(keabkyy—wn dt) 9
(i) = (i) a4

yields the relation

2 22 2 A
(k% + k) 2=~ _gin=-
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where Vi = /ut/p. Because the S wave velocity is always smaller than
the P wave velocity, the considerations regarding stability and dispersion
should be based on the P wave velocity. However. the highcut frequency
which is derived on the basis of the lowest velocity should be according to
the S velocities. The same type of analysis as above can be carried out for
the 3D case.

3.5. Free surface boundary condition

As with the acoustic case the free surface boundary condition is approxi-
mated by a wide zone bellow the grid with zero P and S velocities. Although
this means that all stress components are zero in that region, the velocities
as well as the displacements are not zero there and must be stored (usu-
ally they are almost equal to zero as we move away from the boundaries).
Doubts have been raised about the correctness of this condition since the
correct boundary condition requires the vanishing of the tractions only, and
not of all the stress components as in the present procedure. For example
in 2D t, = 0,y and t, = 0y, should vanish but not necessarily o,,. Indeed
tests which we have performed indicate that this condition is not perfect
when the source and receivers are close to the surface, but seems to work
well when the source and receivers are well bellow the surface.

3.6. Conservation of energy

Most theorems of linear elasticity can be proven independently for the
Fourier method with the second order time derivative approximation. At
first we derive the law of energy conservation. The derivations are carried
out in the following for 2D geometry. A similar analysis can also be done
for 3D.

For the sake of brevity we use subscript notation with the convention
where a repeated index implies summation. The equation of momentum
conservation then writes:

OO'U

L= U+ f; i=1.2
Jdx; PUA T !

The displacement strain relation is given by:

1 /oU;  0U; L
i =3 <0;17j + 0—7“7> i,j=1.2

The stress strain relation reads:

Tij = /\e,“/\.(‘i,;j + 2/L6,‘j
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or also
g5 = (A6ij0rt + p(badjn + 6irdji))ert.

With this form the following lemma is clear,

Lemma 1. For two different displacement states U i(l), U with correspond-

A
(1) (1) 2) _(2)
ij iy i7

and e;;' 0, respectively, the following re-

ing strains and stresses e
lation is satisfied:

(1) (2) _ _(2) (1)
i € = i Gy -

We will also need the following leminas:

Lemma 2. For odd based FFT’s and the Fourier derivative approximation,

Ny—1 d_f B

dx =0

n=0
Proof: For the DFT, in general,
N1

> Glx) = G(0)

n=0

(j—i) =ik f(k)|k=0 = 0
k=0

Lemma 3. For the DFT derivative approximation, the product rule holds

but:

(f-g):%-ﬁf-

dg

d dg
dx

da
Proof: By the convolutional property:

d
(f-g)=ik(fg) =1kN,f * g

da
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where the * symbol denotes a convolution. Therefore,

(N,—1)/2

%(f-g):»Nl S ik f(k )tk — k)

v=—(Ne—1)/2

(Ne—1)/2
=N, Z ik,:/f(ku’)g(ku - ku’)
= (N.—1)/2
(N —=1)/2
+ N, Z lf(kv’)(kl/ - kxlj)g(l‘u - ku’)
= (Ny—1)/2

d}v A(Jig
(o) (@
As a result of lemma 2 and lemma 3 we get the discrete equivalent of

Gauss’s theorem:

Lemma 4. For two discrete and periodic functions f and g

\il f dgn o N.—1 dfn .
n ) - dx gn
n=0 n=0

and in two dimensions

1IN, -1 TN, -1
6971 Ny afntny
E E fron, or E : E : Gnany
ny=0 n,=0 ¥ ny,=0 n;=0

or in general

N,—1N,-1 1N, -1

- agn My afn My

§ § fn Ty = - § E JnIny-
ny,=0 n,=0 n,=0 n,.=0

We now need a number of results concerning temporal derivatives. We
denote:

: 1 1] fr—
n = 5 (Uq‘ +1/2 + U 1/2)

Lyt —un N up~urt
2 d¢ 2 dt
U'n-%-l _ U_nfl

2dt
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where,

U'n,+1/2 _ Uin-i-l _ Uin,
‘ dt ’

Since,

. 1 /et iy
1 (Ui +1/2 o 1/2)
dt

we get

Ur i = 2%1; {(U{"““)Q - <U,-”1/2)1 . (3.6.1)

We can now state the theorems of cnergy conservation.

Theorem A. In the absence of body forces the following relation holds:

n+ n+,
E E (J"H E E ’U = Const.
. N, N, N,

This is the analogue of continuum relation:

1 .
< U a,jeij<11,v+/ pULU; dV} =0,
dt Jv ) 1%

in the absence of body force or external tractions. The first term represents
potential energy whereas the second term gives the kinetic energy.

Proof: Multiply the equation of momentum conservation in the absence
of body forces by Ui”' and sum over N, N,

BWECEN WL

using lemma 4 and (3.6.1) we can write:

n+l/ Un+1/’7 Unfl/ Tn—rl/z

()U ;
- Z Z /) 2t
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Using the symmetry of ;. and then Lemma 1 we can write:

AT o+l a1 ntl ,n _ n n—1
()('[1' n non (ZJ €ij no_ i i 01.1(’i.i

Jx; Tij T % T 2dt Tij = 2dt

therefore:

_ . o - . o e
n+l no__gn e 1 Un+1/uUn+1/z U 1/2[]1‘71 1/2

€ Ti5€i5 . X - U,
722 = Ude‘, — :Z:;/) l 1 2(17‘,1

- N Ny

or

Zznn+l n +ZZ Un+1/2 n+1/2
N, N N

iVor Y

=ZZ%#*+ZZUMN e
Ne N

N, Ny N,

¥

A,l

which states that this quantity is constant as it does not change between
time steps.

Theorem B. When body forces are present and for zero initial conditions

ZZZWﬂ

a=0 N,

BT D WAL
N, N e N

a Y Au

The right hand side represents the total work of the body forces.
Proof: Again. multiply the momentum conservation equation by U", but
this time with the body force term included. We get:

- Z Z _ 01 i Z Z pUMT =N ur gt
N N, N,

and with the same manipulations as for theorem A we got:

n+l n n o n—1

2 N [Unu/zUnH 2 o "1/2(]‘n 1/2] ZZU”fn
2dt ! !

NNy

,A,,
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Replacing n by o and summing over time from 0 to n gives:

‘—izz dtU;’fi“ _ ZZ[ n+1 n + U71+1/2Un+1/2
a N, Ny -

which is the required result. The energy conservation has been checked
numerically and found to be valid to within computer precision.

3.7. Source receiver reciprocity

The Fourier method satisfies source receiver reciprocity as in the continuous
case. Given one solution U corresponding to a point force in the m
direction at location (i1, 1), and a second displacement VZ corresponding
to a point source in the [ direction located at (is, jo) with the same wavelet
then:

. |1
U (iz- j2) = Vi (i1, jit)
(Here the superscript denotes force direction and does not correspond to
the time variable as previously).

Proof: We prove the results first for an impulsive force and then, be-
cause of the superposition, the result will be true for any wavelet. The
displacements from the first set of forces satisfy:

8 777
(91']

where as before

UMIJn) = Ui(X = Ida.y = Jdy.t = ndt)

pU™ 4 8im6(I — i1)8(J — j1)d(n) (3.7.1)

The second set of displacements satisfy:

o

= pVi + 6ub(I —i2)6(J — j2)6(0) (3.7.2)

a.’]}j

where we have used a different time index O. We now multiply (3.7.1) by

V! and (3.7.2) by U". subtract the results. and perform a summation over
all grid points to get:

771

Z Z VI L — T _m Z Z |:,0V Unz [)Um VZ
+ Z D Vi bim (I =)o = j)b(n) — Ulsy
I J

X(T — i2)8(] = j2)5(O)]
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or using the discrete Gauss's theorem,
! ar7m
B {dh o ouU, T,}
§ :E : Fy L Y
- Ox; O

= SN IO UV 4 VG 008(n) = U (2. 2 n)3(0)
I J

However,
m
g ()U l ZZ g e !
ZZ or, €045 IJTTJ]
I J

where we utilized the symmetry of o5, T,J and replaced oU!™ |0z ;, OV} |z
by the corresponding strains i} and el ;; respectively. The term vanishes
because:

l mo__ I m
€j04; = TijCy

We next replace the time index 0 by 7 — n and sum from zero to 7. We
get:

2.2

+Z Yy, jp.m—n)é(n) = UM (3. j2.n)d(1 —n)] =0
n=0

va I J7—n)UM (I Jon) — pU(I, J.n)VI, J. T~n)}

n=0

We now evaluate:

T

Z [/)VI-/([, Jor—n)U™I.Jn) - pUM(I, J)VHI, J.7 - n)}
n=0
= Z {pVi’([. J.T—n)

n=0

" uril.Jn+1) =201, Jn)+ UM, Jn—1)

de?
—pUM™(I.J.n)

VL J1m—n—1)=2VHI.J. 7 — n)+ VHI.J1—n+1)
dt?

X

- ‘
= S Vi o = m)U (L T+ 1)

n=0
— VI Jor —n = VYU, J.on) — pUl (1. Jn)VHI Jor — 0+ 1)
+pUM (L Jon = WL o7 —n)] (3.7.3)
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This sumn contains differences of identical terms which are only shifted
apart by one index. This sum must therefore vanish if U (I,J.0) =
VNI, J,0) = UM, J,1) = VHI.J.1) = 0, which corresponds to zero
initial conditions for displacements and velocities (since U"(I,J,0) =
[UL1.J,1) = U, J, —1)] /24dt etc). Performing the remaining sum in
(3.7.3) then gives:

V;l”(il,jl,’/“) = Ulm(i2~j2~7—)

which proves the theorem.
Reciprocity has been verified on the computer to within the accuracy of
the machine.

4. Improvement of the time integration

Until now we have compared spatial derivative approximations while al-
ways using second order differencing for the time derivative approxima-
tion. However, duc to a recent development by Tal-Ezer (1984), the time
integration can be carried out with very good accuracy and with better ef-
ficiency than by differencing. The basic idea behind Tal-Ezer’s approach is
that results from approximation theory concerning scalar functions apply
directly to linear operators, like the operators encountered in the spatial
derivative approximation for the wave equations. In the following we illus-
trate the theory for the 1D constant density wave equation. The results
apply directly to 2D and 3D as well as to the elastic wave propagation.

4.1. The formal solution

We consider the 1D acoustic wave equation given by:

1 82P 02

and write it as a coupled system:

o P 0 1 P 0 ,
a[5)-(% 18]+ 4

With a suitable approximation for the spatial derivatives this system be-

comes a set of 2N, coupled ordinary differential equations in time for P
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and OP/Jt at the N, spatial grid points. This system can be written in
compact form:

dV

o =G, V+f (4.1.3)
subject to the initial condition V(t = 0) = VY. V is a vector of size 2N, of
P and P at the grid points, f is the inhomogeneous term in (4.1.2) and G,

is the discrete representation of the operator in that equation. The formal
solution to (4.1.3) is given by:

t
V(t) =l V0 +/ et f(t — 1) dr. (4.1.4)
0

This solution has the same form as the solution when V', f and G, are
scalars. In the following we consider a Chebychev expansion of (4.1.4)
which is both accurate and also gives continuous error control. The homo-
geneous case with no source term is first discussed.

4.2. Homogeneous case

We use the following known expansion for e*:

A
o I;)Ck.Jk(tR)Qk (%) . (4.2.1)

where |z| < tR and z lies close to the imaginary axis. Cyp =1 and C, = 2
for k # 0. Jp represents the Bessel function of order k& and Qg(w) are
modified Chebychev polynomials which satisfy the recurrence relation:

Qi1 (@) = 20Q4 (W) + Qi1 (w) (4.2.2)
with Qo = 1 and ¢, = w (Tal-Ezer.1984). Generally the scries converges

rapidly for M > tR. Using tG,, instead of z results in the approximate
solution:

M
V()= Cui(tR)Qx (%) v, (4.2.3)
k=0 i

R should be chosen larger than the range of the eigenvalues of G,,. Based
on the homogeneous veloeity case where the eigenvalues can be shown to
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be +ick, with k, the wavenumber (the corresponding eigenvectors are.
(1,ctkv e2ike elkv(Ne=1) ick, . Fick, efv .. +ick, ethr(Na=1y 1y, —
=N, /2. .. (N, — 1) /2 for even based DFT). R should be chosen slightly
larger than ¢,/ dz. The solution in (4.2.3) can be generated recursively.
The starting values are given by:

Qo <%> vo=vy0 (4.2.4)

and

Gn 0 _ Gn 0
@(R)V-RV

Additional terms are generated with G, /R replacing w in (4.2.2). Each
time after a new Qg is calculated, an additional term is added to the sum
(4.2.3). After V/(t) has been calculated, it can be used as a starting value
to step the solution once more. The algorithm becomes more efficient for
large time increments although then the storage required for snapshots and
time sections may increase considerably.

4.8. Intermediate resulls

Equation (4.2.3) shows how to step the solution from 0 to time ¢ in a
relatively large increment (often Rt ~ 100 or t ~ 200 msec). However.
especially for time sections we need results at much smaller intervals. To
achieve this we use (4.2.3) with ¢/ < ¢ replacing ¢. This does require cal-
culation of other sets of Bessel functions Ji.(#'R), (a relatively inexpensive
scalar operation) but does not require the calculation of new Chebychev
vector polynomials @ V?, which is the most costly operation.

4.4. Solution with source term

As in the previous sections, we consider a separable source of the form
F(t) = Ah(t) (4.4.1)

where A(z) is a time independent vector. A(z) is usually chosen to be a

§-function or at least a highly localized function in space. h(t) gives the
source time history. The inhomogencous solution then becomes:

-t
V = {/ et — 1) dr| A. (4.4.2)
0
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Using the Chebychev expansion for the exponential we get:

A7 t G
= CiJ Vh(t — 1) dr z . 4.
1% AZ[/O e T (TR)R(t )dJQk{R}A (4.4.3)

e=0

This has the same form as the homogeneous case except that A replaces
V? and the Bessel functions Ji(tR) are replaced by the coefficients:

t
b = / Je(TR)R(t — T)dT (4.4.4)
0

The coefficients by, need to be calculated by numerical integration.
4.5. Nonreflecting boundary condition

We have seen that the absorbing boundary could be represented by replac-
ing the acoustic wave equation by the system:

—_— = 2 .

dt |V AL ||V s
When incorporating the nonreflecting boundary condition with the Tal-
Ezer method this system is solved directly. 7 is different from zero only
along the boundaries of the grid. + causes the eigenvalues of G, to have
a real negative component (when v is uniform they are simply shifted by
7 ). This in turn, may necessitate the expansion R considerably to ensure

convergence of the expansion. Instead it is possible to modify the scheme
somewhat according to:

V = eG,,t VU — C—)\tI et(Gn+/\I) V()

where A is a suitably chosen shift parameter and I is the 2V, x 2N, identity
matrix. Then /(% A1) js expanded and the results are multiplied by e At
after the calculation. We have found that the value A = Ymax/2 works well.

4-0. Efficiency. comparisons with finite differences

It is interesting to compare the efficiency of the Tal-Ezer method with
the efficiency of temporal differencing. The key factor in comparing com-
putational effort is the required number of spatial derivative evaluations
required in propagating the solution a certain amount of time. For tempo-
ral differencing this amounts to the required number of time steps whereas
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for the Tal-Ezer method this amounts to the number of terms in the Cheby-
chev expansion. For the comparison we consider the amount of effort for
propagating the solution 100 grid lengths in a homogeneous model.

Temporal differencing with o = c¢dt/dz = 0.2 obviously requires 500
function evaluations. On the other hand for the Tal-Ezer method the num-
ber of functional evaluations Ny is approximately tR. Here ¢t = 100dz2/c
whereas for 1D R = cw/ dx. Therefore, Ny = 1007 ~ 314 function evalua-
tions. For 2D, this value needs to multiplied by v/2 to yield approximately
441. In 3D the 1D value needs to be multiplied by v/3 thus giving 544.

As for storage, the Tal-Ezer method requires storing V, Qi V., and
Qr -1V which are of size 2N, and ¢ which requires N, words. This amounts
to 7 variables of size N, which is significantly more than the 4 variables
required for differencing. In a later section we will derive variants of the
Tal-Ezer method which are both faster and require less storage.

5. Forward modeling from an operator view

The time integration method introduced by Tal-Ezer (1984) was based on
the analogy between solutions to the first order scalar ordinary differential
equation dY/dt = gY and the coupled equations which are obtained after
a spatial discretization of the wave equation. This suggests a reexamination
of numerical modeling from an operator perspective. The following sections
are a first attempt in this direction.

5.1. The formal solution

We return to the acoustic wave equation for constant density:

o*p 5, (0P .
—— =c(z)=—= + S{x)h(t (5.1.1)
= )y + S

where S(x) is the source spatial distribution, and h(r) is the source time
history. We rewrite this equation as:

02
007123 = —L% P+ S(x)h(t) (5.1.2)
where
N2
_ L2\ - (,‘2()_

or?
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1s a spatial operator. After spatial discretization. (5.1.2) becomes a coupled
system of N, ordinary differential equations for the vector P containing
the nodal pressures. The formal solution of (5.1.2) without the source term
is

sin[L 1]

N,

P, = cos|Lx t]Py + P, (5.1.3)

Equation (5.1.3) satisfies (5.1.2) and also

P(f:O):Po,
and
oP .

This type of approach was already used in a previous section discussing the
Tal-Ezer method. However there the point of departure was the coupled
gystem:

df[ } { éHgb{Suﬁhu)} (5:.14)

or in operator notation,

<

ov
where
fr=(0.0,.... 0.5(0). S(1),..., S(N, — 1))
and
Vi = (P(().f).P(l.t) ..... P(N, —1.1). %(0 t).. %f(m_ 1,t)>

The formal solution to the system without source was shown to be:

V, =9y, (5.

(21
—
[
~

which satisfies (5.1.4) subject to the initial condition Vi_g = V4.
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5.2. Rederwation of temporal differencing through a Taylor expansion of
the formal solution

Temporal differencing schemes can be obtained after a Taylor expansion of
the formal solutions (5.1.3) or (5.1.5). For the single system we can use the
series:

Lt L4 t!

cos[Ly t] =1 — 4.

2 4!
. L3 8 L} P
sin[Ly, t] = Ly, — 3" + 5"' 4 (5.2.1)

where T is the identity operator. Equation (5.1.3) becomes:

L2v t3 L4‘ t5

L% 2 LAt ‘ ‘ .
N, N, +~-}P0+[t— N AN, +"}Po

2 41

Pr= {]_ 3! 5!

For obtaining a formula that does not contain Py we rewrite the above
solution for time —t :

L3 t7 Ly t! L3 8 Li .
P,=|I- == v Py — jt — == <o Py,
! { 2 Ty J 0 [ 3 TR } 0
and then add the two formulas:
L4 4
P, =2P— P, - Ly *Py + P+ (5.2.2)

Depending on how many terms are retained one obtains finite- differences
schemes of different orders.
274 Order. Retain the first three terms on the right hand side of (5.2.2).

P, =2Py- P, - L} t*P,
or in the 1D case,

0’ P,

P =2P,— P, + 2
t 0 ¢+ 22

which is the known central finite-difference formula when the time step size
dt is used instead of t.
4" Order. Retain the first four terms:

PPyt , 07 <(_2(32Po>

ox? +1_2 D2 ox?

Pf:2P0~P_t+(72f2
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which is a fourth order scheme suggested by Dublain (1986). This scheme
appears to be an improvement over 2°¢ order differencing. It does require
twice as many spatial derivatives per time step, but the time step can be
twice as large while maintaining improved accuracy.

5.3. Finite difference schemes derived from system

We now consider schemes derived from the Taylor expansion:
G ! 3
G I+Gnt+ (G )% + ? (Gnt)” +

We get:

Vi = etV = Vi + G Vi + = G2vo+ Gsvo+

Truncation of this equation gives schemes of different orders. This method
is often called the Taylor method in the literature. Retaining terms up to
4" order yields a scheme which gives results very similar to the 4" order
Runge-Kutta scheme.

In a second order scheme two function evaluations are required per step
(e.g. G, Vy and G2V, = G,,(G,, Vy) ) as opposed to one function evaluation
required for the 2" order FD scheme above. A more efficient scheme can
be derived by writing the above equation for time —¢:

V—t —Gnt ‘/O fGn‘/O ‘+‘ G2 ‘/0 +

and subtracting the two equations while retaining only the first term on
the r.h.s. . This gives:

V, = Vo, + 224G, Vh.

Writing this equation in full yields:

P P 0 1 P
op | =lep| *2| e ) lar
ot 1t ot 4 —t dx? ot 1o

Elimination of 0P/0t from this system yields the single equation

OPO

Py =2P, - Py +4C*2 220 e
r
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This formula which spans two time steps has only half the efficiency as the
scheme derived directly from the acoustic wave equations. In other words,
here we would need to use a = ¢dt/ dzx = 0.1 to get the same accuracy as
the other scheme has for o = 0.2.

5.4. The rem approach (rapid ezpansion method)

We have seen that finite-difference schemes derived directly from the acous-
tic wave equation are twice as efficient as schemes derived from the system

The same type of improvement can be obtained over the Tal-Ezer method
when the point of departure is the original acoustic wave equation instead
of the coupled system (5.1.5). Consider first the homogeneous case:

aQP 2 =
-7 = ~I% P. (5.4.1)

We have seen that the formal solution to this equation is given by:

sin[Lx, t]

P, = cos[Ln, t]Py + P,
Ly,

We now add to this solution the formal solution at time —¢ and obtain:
P, = P, +2cos[Ly,t]Po. (5.4.2)
However,
cos[Ly,t] = % [eiLN_rt +071Lmt]

and

. L
ellnet — ZCka (tR)Qp (1 N >

k=0

also,

i —iL
eilLN-"t chjk fR Qk < R\ )

k=0
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Therefore,
AM/2 I
Wy,
cos[iLy, 1] Z Cor Jor(tR) Q2 < Ia )

(Qr(y) are even functions of y for even k, and odd functions of y for odd
k). This sum contains only even order functions Qs; in contrast to the
original Tal-Ezer method. Therefore the amount of computation will be
half as well. Moreover, @y (iLy,/R) for even k contains only powers of
— L3 which is our basic operator ¢?(9%/0x?) (had we needed to evaluate
for example Ld\ this could have been more complicated). Now we need
a recursion relation for @, with only even terms. Considering again the
recursion relation:

Qr+1 = Q-1+ 2wQ (5.4.3)
we get:
WOk = Qri1 — Q-1
2
Therefore,
2
wQp_1 = %

Substituting the above into (5.4.3) multiplied by w gives:

Qk+22— Qr _ Ok _2Qk—2 + 2020

or.
Qri2 = (4w’ + 2)Q — Qp_s. (5.4.4)

This equation allows recursion among even terms or odd terms separately.
The recursion for even terms can be started by noting that Qo = 1 and
(2 = 1+2w?. For odd terms Q) = w and Q3 = 4w +3w. Putting —LQ\/R
instead of w? allows use of REM approach in a very similar manner to
Tal-Ezer’s method. However, values of P_; and P, need to he known to
initialize the process.
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5.5. Solution for the source term

The formal solution with the source term is given by.

! Si N = =4
P(t) = [/ ilil(L#T—)h(t - T)dT:\ S(x). (5.5.1)
0 Ly,
As in the previous section, it can be shown that:
iLy,
isin(Ln,t) Zj2k+] (tR)Q2k+1 ( 7 > (5.5.2)
Therefore,
SiIl(Lj\'rlL) _ > J2k>+1(tR) R ‘ <1L\.>
Ly, ;0 R Ly, %\ R

. . . . N N e . 2
The summation will again contain only powers of the basic operator — L%, .

A substitution in (5.5.1) gives:
t .
J2k+1(TR) R ) ILNJ S
P(t) = Z UO Th(t —7)dr| = - Quer | 3 ()

k
or
iLy, |
Z b2k+1 Q2k+1 ( I; >S(17) (5.5.3)
2k+1 :
with
"t _
b :/ J(TRYh(t — T) dr. (5.5.4)
0 R

b can be evaluated numerically as in the ordinary Tal-Ezer method. The
recursion is initiated by:

E o, (L> S(a) = S(a).

iLy, R
and,
: 2
R iLy. ALY, el 4 20°S
E;Q:s <—R—> S(x) = <2I e S(r)=2S8(x) + Sy
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It can then be carried out by:

( R )ch.HS(:L-) = <£—> QrS(z) — <i> Op8(x) (5.5.6)

ily, iLy,

N,

5.6. Amount of work for REM

The amount of work for the REM is about Rt/2. Since R = ¢/ dx for 1D,
the amount of work for propagating 100 grid points will be

¢ 100dz

—_ =1.1-507 = 165.
e e 50m 65

where the factor 1.1 was added to assure convergence (the expansion re-
gion should be slightly larger than Rt. For 2D and 3D the corresponding
values will be 233 and 285. These numbers are significantly less than the
corresponding numbers for second order finite-differences.

In terms of storage we need global variables for Qx, Qr42. P: and 2.
This is the same number of variables as are required for finite-differences.
However, more space is required for storing time sections and snapshots
which need to be in memory until all the terms in the recursion have been
calculated.

5.7. Nonreflecting boundary conditions

For the REM approach we have not yet found a rigorous manner to intro-
duce absorbing boundaries. However, we have found that by multiplying
Qr and Qp 42 in a strip surrounding the boundaries by a factor less than 1
we could almost eliminate all boundary reflections and wraparound. This
procedure is similar to that of the temporal differencing case (Cerjan et
al.,1985) except that here it is not clear how to justify this procedure on
the basis of a differential equation.

5.8. Concluding remarks

We have presented an approach for modeling acoustic and elastic wave
propagation in the Earth which we have developed. It appears that for
realistic typical reflection seismology configurations, computer simulation
can be performed in 2D and 3D. However, there are a number of areas
where further research is required. One topic is the incorporation of a
more complete material rheology which will include anisotropy and atten-
uation. First steps in that direction have been taken (Carcione et. al.

b
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1988a,b). A second area in which there is roomn for improvement is the
free surface boundary condition in the elastic simulations and in general
handling more complicated geometries with spectral methods. A promis-
ing approach appears to be use of the non periodic Chebychev expansion
instead of the Fourier expansion (Kosloff et al..1989).
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