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Practical implementation of three-dimensional poststack depth migration 

Moshe Reshef* and David Kessler1 

ABSTRACT 

This work deals with the practical aspects of three- 
dimensional (3-D) poststack depth migration. A 
method, based on depth extrapolation in the frequency 
domain, is used for the migration. This method is suit- 
able for structures with arbitrary velocity variation, and 
the number of computations required can be directly 
related to the complexity of the given velocity function. 
We demonstrate the superior computational efficiency 
of this method for 3-D depth migration relative to the 
reverse-time migration method. The computational al- 
gorithm used for the migration is designed for a multi- 
processor machine (Cray-XM P/48) and takes advantage 
of advanced disk technologies to overcome the 
input/output (IjO) problem. The method is demon- 
strated with both synthetic and field data. The migra- 
tion of a typical 3-D data volume can be accomplished 
in only a few hours. 

INTRODUCTION 

The recent growth in three-dimensional (3-D) data pro- 
cessing leads to a need for high-quality 3-D migration algo- 
rithms. Since 3-D data processing is considered expensive, eco- 
nomical restrictions may dictate the use of simple and fast 
migration techniques such as theflk method (Stolt. 1978). Ac- 
curate prestack and poststack depth migration algorithms that 
can handle complicated two-dimensional (2-D) geologic struc- 
tures have been developed in the last few years. However, 
most of these techniques are time-consuming, and although 
extension of these algorithms to the 3-D case is straightfor- 
ward, the high cost prevents the use of these algorithms in a 
standard 3-D data processing sequence. 

High cost is not the only obstacle to using the more accu- 
rate depth migration algorithms. In order to obtain an accu- 
rate image of the earth’s subsurface, the velocity must be 
known in great detail. Unfortunately, this is rarely the case 
and therefore the justification for using these techniques is 

debatable. A practical solution to this dilemma is an iterative 
procedure of depth migration (Whitmore, 1983). In that pro- 
cedure. the migration results are used to improve the velocity 
function. With good interpretation of the intermediate results. 
the tinal depth section can be obtained with a reasonable 
number of iterations. The major drawback of such methods is 
that the same amount of computation is required for each 
iteration regardless of the complexity of the velocity function. 

Accurate depth migration algorithms require extrapolation 
of the entire wave field. This extrapolation can be done either 
in time or in depth (Tarantola et al.. 1988). Although correct 
extrapolation must be based on a two-way wave equation 
(Kosloff‘ and Baysal, 1983: Wapenaar and Berkhout, 1986) a 
one-way wave equation provides adequate accuracy for the 
migration of stacked data. Since methods based on these dif- 
ferent approaches all perform well in the 2-D case. the choice 
of method to he implemented in three dimensions is made 
according to the practical aspects of each method. 

The enormous amount of data and computations involved 
in appiicarions such as 3-D~depth migration requires that- sp~e- 
cial attention be given to the computer algorithm design. 
When misused. even advanced supercomputers are unable to 
handle such large problems. The feasibility of using these com- 
putationally intensive migration techniques depends on the 
ability to design an efficient “out-of-core” solution. Proper 
data organization, along with the use of advanced storage 
devices and high-speed I/O channels, helps alleviate the I/O 
problem, whereas a reduction in elapsed computation time
must be accomplished by the implementation of parallel pro- 
cessmg. 

In the following, we describe a 3-D poststack migration 
method based on a two-way wave equation. The method be- 
longs to the space-frequency group of migrations (Berkhout, 
1981) and emphasis is given to its practical aspects and the 
computer algorithm employed. The algorithm enables the cost 
of the migration to be related to the complexity of the given 
velocity function without affecting the accuracy. The method 
is compared to other migration methods and, in particular, to 
reverse-time migration. Finally the algorithm is tested on syn- 
thetic and field data examples. 
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MATHEMATICAL ALGORITHM 

We describe below the extension of the generalized phase- 
shift method (Kosloff and Kessler, 1987) to 3-D problems. The 
depth migration is based on the temporally transformed non- 
reflecting wave equation (Baysal et al., 1984) given by 

where x. y, and z denote Cartesian coordinates; c(x, J, z) is 
half the acoustic velocity; o is the temporal frequency; and 
p(.x, y, 2, o) is the transformed pressure field. 

As in the 2-D case, we can recast equation (1) as a coupled 
first-order system given by 

- 

(2) 

Designating the matrix on the right-hand side of equation (2) 
by B, the system can be written as 

“V=QV. 
r7Z 

If N, and N, denote the number of seismic traces in the x and 
y directions, respectively, the vector V has 2N,N, elements, 
where the first N, N,v values contain p, followed by N, N, 
values of c(GP//az). 

The solution of equation (3) is carried out in depth after 
c(i;p/?z) on the surface is calculated (see Kosloff and Baysal, 
1983). The final depth section is accumulated according to the 
imaging condition 

P,,,(X. 4’, z) = c P(.Y, I’, Z, 0). (4) 
0 

The generalized phase-shift method starts from the formal 
solution of equation (3) given by 

W)z+dz = e”“(V), . (5) 

Equation (5) is evaluated by the expansion (Hamming, 1976) 

(v),+,, = es”‘(V)z = (6) 
where u0 = 1, ak = 2 for k > 0. R is chosen below to be larger 
than the eigenvalues of E&k, and J, are Bessel functions of the 
first kind. (& are Chebychev matrix polynomials which are 
generated recursively by 

Qk+,V=Qk-,Vf2 F QP ( ! (7) 

with 2” V = V and 2,V = (&lz/R)V. 
For stable results, R is defined with respect to the lowest 

velocity in the depth interval 

wdz 
R= 

Cmi, (x, y. I’ = constantj’ 
(8) 

The expansion given in equation (6) is valid when the eigen- 
values of Sci: are purely imaginary. which requires the elimi- 

nation of the evanescent components from the solution (Kos- 
lof’f‘ and Kessler, 1987). For k > R, the expansion (6) converges 
exponentially and therefore can be truncated to a finite 
number of terms 1~1 in equation (6)]. Since a is a constant and 
the Chebychev polynomials are bounded by unity, the Bessel 
functions serve as the criteria for truncating the expansion. 
Equation (6) is evaluated for each frequency at all depths. The 
tinal section is accumulated according to equation (4). 

COMPUTATIONAL CONSIDERATIONS 

It was shown by Tal-Ezer (1986) and by Kosloff and Kessler 
(1987) that the integration technique used in the generalized 
phase-shift method is highly efficient when the integration step 
(depth step) is large. Since sampling considerations require a 
relatively small depth step (usually the choice will be dz = 
Cmin l/t/2), a modified version of equation (6) is adopted: 

where 0 < T, I I. The calculation of Q requires most of the 
computation time Since Q is independent of y, equation (9) 
can be used for large dep;h steps dz, and the required inter- 
mediate results yd~ can be obtained with minor cost by gener- 
ating additional sets of Bessel functions. In practice, the depth 
step should be defined by the resolution of the velocity func- 
tion. and then the propagation in a large constant-velocity 
region can be accomplished without recalculating (2k. Not 
apparent from equation (9) is the dependence of the truncation 
index 1)~ on the frequency. To determine the influence of the 
frequency band on the efficiency of the integration scheme, a 
synthetic example was tested. In this example the velocity was 
2000 m/s: the time interval was 0.004 s; and the sampling 
interval required for the depth section was 8.0 m. Figure 1 
represents the number of terms (M) in the summation needed 
to achieve a specific accuracy (0.001 percent) as a function of 
the frequency. The number above each of the five lines indi- 
cates the number of sampling intervals (i.e., 1 is 8 m, 25 is 200 
m, etc.) in the integration step. From this figure, one can see 
the tradeoff between the depth step size and frequency band. 
In Table 1 an efficiency factor is given as a function of both 
depth step size and frequency band (a constant velocity of 
2000 m/s and a time interval of 0.004 s were used). The ef- 
ficiency factor is the ratio between the number of compu- 

BI 

OJ (Hz) 

4z 

M 
FIG. 1. The number of terms M required to achieve 0.001 
percent accuracy for five depth step sizes. dz = 8.0 m, dT = 4.0 
ms, and (’ = 2000 m/s. 
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Table 1. Efficiency factor as a function of frequency and depth 
step size. 

Step size 
(m) 

8.0 
200.0 
400.0 
600.0 
X00.0 

32 Hz 63 Hz 125 Hz 

1.0 1.0 1.0 
6.8 5.2 3.9 
8.6 6. I 4.4 
9.5 6.6 4.6 

10.2 6.9 4.8 

tations needed to extrapolate to a certain depth with a step 
size of 8 m and the number of computations needed to extrap- 
olate to the same depth with larger depth steps. The frequency 
in this table is the highest frequency used in equation (4). Since 
the accuracy of the method is not affected by the step size, the 
table indicates that a large depth step should be used when- 
ever possible. However, when higher frequencies arc included 
in the summation, the effectiveness of larger depth steps is less 
significant. 

In the generalized phase-shift method. the spatial deriva- 
tives are calculated by FFTs (Gazdag, 1980; KoslofT and 
Baysal, 1983). The use of FFTs makes the calculation of 
matrix @ [see equation (3)] the most time-consuming part in 
the algorithm. When the velocity function consists of only 
shallow dipping interfaces, a slightly modified version of equa- 
tion (I). 

can save many computations. This version of the nonreflecting 
wave equation gives an impedance match only in the vertical 
(z) direction (Baysal et al.. 1984). In this case, the number of 
FFT operations needed to compute @ is half the number of 
operations needed in the general case. The calculations of the 
space derivative terms in B require only a single forward and a 
single inverse FFT. When the general form [equation (2)] is 
applied, each space derivative computation requires two for- 
ward and two inverse FFTs, since multiplication by c has to 
be performed in between. 

To process field data, the use of FFTs may require the 
addition of null traces to the data in order to match the FFT 
operator size. Since the addition must be done in both the .x 
and J directions, it can result in a significant increase in the 
data-set size. In this study a mixed-radix algorithm to calcu- 
late FFTs was used (Temperton, 1983). This algorithm allows 
more flexibility in the choice of the grid length compared to 
the traditional radix-two algorithms and therefore the addi- 
tion of zero traces can be minimized. Implementation of the 
algorithm on a vector computer does not show degradation in 
performance compared to the radix-two algorithms. Fur- 
thermore, the ability to compute odd-base FFTs may elimi- 
nate some performance degradation associated with memory 
bank conflicts on most vector computers. 

COMPUTER IMPLEMENTATION 

Three-dimensional depth migration of a typical data set 
iCf+iirCfi an amount of memory generaiiy exceeding thecentrai 
memory size of available computers. Therefore, an out-of-core 
scheme must be employed. The major issues in the design of 

very large out-of-core algorithms are, first, the large amount of 
I/O activity and. second, computation time

We shall illustrate the I/O problem with an example. In this 
example, the input stacked data set contains 360 lines with 
375 !races in each line_ The time increment_ is 0.004 s <and each 
trace is 6.0 s long (I 500 samples). The size of this data set is 
202.5 million words (M W). The desired depth section contains 
1000 samples at 8 m intervals and requires 135 MW of stor- 
age. When computations are done in the frequency domain, 
an appreciable reduction in the input data-set size can be 
achieved; if for example wee use 66~5 Hz~ as the high-cut fre= 
quency, only 400 frequencies are needed for the computations 
(125 Hz, the alias frequency in this case, will require 750 fre- 
quencies). IT(.(\-. I‘, w) is kept real and becomes an array of 
375 x 360 x 400 or 54 MW. Even though the algorithm re- 
quires both P and c(c?p/i?~), the total amount of data is still 
only about half the initial data-set size. 

The fact that the above integration scheme is a one-step 
scheme allows the arrays that contain the transformed pres- 
sure field and its derivative to be updated at each depth step 
with no extra memory requirement. With a configuration of 8 
MW of central memory, an out-of-core solution must be im- 
plemented. This example requires approximately 1.73 gig- 
abytes of data (a Cray word consists of eight bytes) to be 
transferred to and from the central memory at each depth 
step. A proper organization of the data [P and c(i;p/i?z)] on a 
high-speed storage device (currently capable of transferring 
more than 2 billion bytes per second) makes I/O time almost 
negligible and the algorithm becomes CPU bound. 

The migration algorithm requires an enormous amount of 
computation time even for very fast vector computers. A 
shortened elapse time for large out-of-core applications can be 
achieved only if a high degree of parallelism occurs in the code 
(Larson. 1984). In the algorithm just described, the migration 
is carried out in the frequency domain. The downward con- 
tinuation of each frequency is totally independent from the 
continuation of other frequencies. Parallelism can therefore be 
implemented at a very high level in the code. With the use of 
the Cray-XMP/48 (four processors), the speedup factor that 
we obtained was 3.75. It should be pointed out that, due to the 
high transfer rate of the storage device, the I/O operations 
were done sequentially. The same algorithm can be adopted 
with slower storage devices by overlapping the intensive I/O 
activity with the computations, provided that I/O operations 
can be performed inside the parallel region of the code. 

The computations for the above~ examples require 8+ 5 of 
elapsed or total time to downward extrapolate all frequencies 
a single depth step. If, for example, a velocity function is given 
at a vertical interval of 50 m, the whole depth section (8000 m) 
can be calculated in 3.5 hours. With input traces of the same 
length and for the same frequency band, the largest data set 
that has been migrated consisted of 750 by 810 traces. It re- 
quired the use of a 512 MW solid-state storage device. Wall- 
clock time (using four CPUs) in this case was about four times 
longer than the above example, indicating that with such a 
storage device, the algorithm is totally CPU bound. 

COMPARISON WITH OTHER MIGRATION METHODS 

We divide the comparison with other migration methods 
into two parts. First, the proposed depth extrapolation is 
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Table 2. I/O requirement-omparison between time and 
depth extrapolation. 

resulting in a smaller time increment for the time-stepping 
procedure In this cast, I/O and computational power require- 
ments arc even harder to meet. 

Reverse-time Depth Ratio 
migration extrapolation (depth : time) 

Fast 405.0 MW 108 MW 1 : 3.15 
storage 

Slow 607.5 MW 270 MW 1 : 2.25 
storage 

In the case of poststack migration, we assume that the data 
have no multiples and correct amplitude treatment is not es- 
sential. When the continuity of (:P/Sz (which enables correct 
amplitude treatment) and the presence of downgoing waves 
([or correct reconstruction of multiples) can be ignored, a one- 
way wave equation can be used for depth extrapolation. 

Total I/O 3645 GW 216 GW I : 16.87 
activity 

compared to time extrapolation (i.e., reverse-time migration), 
and, then, the method is compared to other space-frequency 
algorithms. 

We now consider the example given in the previous para- 
graph. For reverse-time migration, a finite-difference scheme 
(fourth order in space and second order in time) was chosen. 
We assume that horizontal sampling is small enough to avoid 
aliasing. With a maximum velocity of 6000 m/s, stability re- 
quirements dictate a time increment of 0.00133 s for the finite 
differencing. The original time section was resampled to three 
times the original sampling density and occupied 607.5 MW of 
storage, although this could have been cut to about 203 MW 
by interpolating the data only at the points where they were 
needed for computation. An explicit solution scheme required 
three global arrays (135 MW each) for the pressure, time de- 
rivative of the pressure, and the velocity. These latter arrays 
needed to be accessed and restored for each of the 4500 time
steps. The above requirements are compared to the worst case 
for the generalized phase-shift method, where the integration 
step is the depth sampling interval (8 m). Table 2 summarizes 
the I/O requirements of both methods. A fast storage device is 
need& f?ir d-&t rwdt&ly~ access& anrt r&u& arr& a~ slow 
device can be used for data that are accessed or stored once. 
Assuming an out-of-core scheme, total I/O activity is the 
number of words that are accessed/restored from/to the fast 
storage device during the migration. For example, 364.5 MW 
is 405 (three arrays of 135 MW each) times 4500 (number of 
time steps) times 2 (for access and restore). The table indicates 
that for reasonable size data sets, the feasibility of migrating 
the data with the reverse-time method on existing hardware is 
questionable. Furthermore, any increase in the number of 
depth samples or maximum velocity results in a significant 
growth in fast storage space and total I,/0 operations with the 
reverse-time method. In contrast, the depth extrapolation 
scheme we presented needs fewer I/O operations when large 
integration steps are used. An increase in the number of depth 
(and velocity) samples changes only the slow storage require- 
ments. Trivial increase of l/O activity is introduced in this 
case, since only one velocity slice is accessed and one depth 
slice is stored in every depth step, and fast storage space re- 
mains the same. In addition to the I/O problem of the reverse- 
time method, a significant increase in the amount of compu- 
tation should be expected because resampling the data to a 
smaller time increment is usually required. 

The algorithm chosen here. although presented with a two- 
way wave equation. can be implemented with other wave 
equations that can be expressed in the general form of equa- 
tion (3). With the present scheme, a one-way wave equation 
involves less computation. Computational efficiency in this 
case depends on dip limitations, the lateral velocity variations 
allowed, and. mainly, the choice of operator for space deriva- 
tive calculations. In terms of memory and storage require- 
ments. there is no need for the ?P/?z array when a one-way 
equation is used. The use of a two-way equation, on the other 
hand, eliminates the necessity for complex arrays and complex 
arithmetic in the solution scheme. However, if the downgoing 
waves are to be eliminated by filtering out components with 
negative vertical wavenumbers at the end of the two-way 
wave-equation migration (Koslof and Baysal, 1983), complex 
arrays must be used during the migration. The use of a two- 
way nonreflecting wave equation for migration of stacked data 
does not require the elimination of downgoing waves. and 
complex arrays and complex arithmetic can be avoided. 

SYSTHETIC EXAMPLE 

To check the accuracy of the method, a 3-D synthetic time
section was generated using the exploding-reflector option, 
based on a nonreflecting wave equation (Reshef et al., 1988). 
The configuration and the physical parameters of the three- 
layer model are shown in Figure 2a. This figure represents a 
2-D cross-section, perpendicular to the y direction, along 
which the medium is invariant. A 3-D grid (128 nodes on each 
axis) was used for the modeling with a grid spacing of 8.0 m in 
all three directions. Quantization of the structure into this grid 
is shown in Figure 2b. The high-cut frequency of the Ricker- 
type source wavelet was 60 Hz. Figure 3 represents one of the 
2-D time sections obtained from the modeling. 

Next, a depth migration, based on equation (2), was per- 
formed. The required sampling interval for the depth section 
was 3.0 m. Since the velocity function that we used for the 
migration was the same as that used in the forward modeling 
(i.e., sampled at 8 m intervals), the factor y [see equation (9)] 
was 0.25. Figure 4 shows one of the 2-D depth sections ob- 
tained from the migration. Comparison between this figure 
and the original model (Figure 2b) shows that the reflectors 
were correctly reconstructed by the migration (this includes 
the diffractions beneath the upper reflector, caused by stair- 
stepping in the original model). 

FIELD DATA EXAMPLE 

The use of the pseudospectral method for reverse-time mi- Figures 5-8 show application of the method to a small 3-D 
gration is even more expensive than the simple finite-difference land data volume. The stacked data consisted of 65 lines with 
scheme, mainly because of stronger stability restrictions. 113 traces in each line. Every trace contained 1500 samples at 
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2400 m/s 

lC24 m 
FIG. 3. Synthetic 2-D time section. 

1024 m 

(b) 

FIG. 4. Synthetic example-depth migration results. 

FIG 2. (a) Physical parameters and model configuration for 
the synthetic example. (b) Quantization of the model into the 
computed grid. 
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(a) (6 

FIG. 7. Cross-line number 90. (a) Unmigrated field data. (b) Depth migrated section. 

a sample rate of 0.004 s. The horizontal distance between the 
traces was 100 m in both .X and y directions. The sampling 
interval of the output depth section was 6.7 m and the migra- 
tion was continued to a depth of 9.6 km. Since the velocity 
function provided consisted of a few flat interfaces, a depth 
interval of I67 m was used for the calculations. The use of 
I-‘l-‘.fs for the computations of the spatial derivatives required 
the addition of ten lines and seven traces per line for a total of 
120 x 75 traces. The highest frequency used in the migration 
was 50 Hz. The total time required to migrate the data set was 
25 minutes. 

Figures 5 and 6 represent the unmigrated time section (a) 
and the corresponding depth migrated section (b) for lines 30 
and 40. respectively. Most of the clearly defined events appear 
on the right-hand sides of the sections. The upper 3 s show 
mainly flat reflectors that are vertically stretched by the migra- 
tion. Much better definition of the structure occurs near 8000 
m in the depth sections, where reflector shapes are distorted in 
the time sections (near 3.5 s). A cross-line comparison is shown 
in Figure 7. where (a) is the unmigrated time section of cross 
line 90 and (b) is the corresponding depth migrated section. In 
general, the comparison between the time sections and the 
depth sections shows that the migration method can be used 
successfully with field data. 

To compare results with the reverse-time method, the same 
data set was migrated with both methods. Parameters for the 
migration were the same as for the depth extrapolation. 
Figure 8a represents part of depth line 50, as obtained by the 

generalized phase-shift migration. A corresponding result was 
obtained by the reverse-time migration (Figure 8b). Differ- 
cnccs in results are attributed to the use of different space 
derivative operators (fourth-order differencing in the reverse- 
time migration and Fourier in the generalized phase shift). 

CONCLUSIONS 

In this work we have demonstrated that the use of ad- 
vanced supercomputers, together with a proper algorithm, 
makes the implementation of an accurate 3-D depth migration 
feasible. With high-speed storage devices, large out-of-core 
problems can become CPIJ bound. Since the described algo- 
rithm is highly parallel. we believe that with future increases in 
CPU speed and with more CPIJs, the processing time for the 
proposed migration method will be significantly reduced. 

This present work suggests that depth extrapolation is com- 
putationally more efficient than reverse-time migration. Be- 
cause accuracy requirements can be satisfied by depth or time
extrapolation, the much smaller I/O requirements and the 
computational flexibility of the depth extrapolation should 
make it the preferable method. In fact, with existing hardware, 
reverse-time migration cannot be performed on realistic size 
data sets in a reasonable amount of time The only drawback 
of the depth extrapolation remains the requirement of elimi- 
nating the evanescent energy components from the solution. 

Depth extrapolation is the basis for many iterative migra- 
tion and inversion algorithms. because of the ability to relate 
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FJG’ ” Depth sections obtained b (a) the generalized phase-shift method and (b) the reverse_tin~e method, 
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the number of computations to the complexity of the velocity Kosloff, D., and Kessler, D., 1987, Accurate depth migration by a 

function. the technique presented above should be considered gencralizd phase-shift method: Geophysics, 52, 107&1084. 

for such algorithms. 
Larson. J. L., 1984, Multitasking on the Cray-XMP/2 multiprocessor: 

Inst. Electr. Electron. Eng. computer, 17, 62-69. 
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