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Optimum time-to-depth conversion

S. Keydar*, Z. Korent, D. Kosloftt, and E. Landa*

ABSTRACT

Time-to-depth conversion is usually accomplished by
converting zero-offset traveltimes, interpreted from a
stacked section, to depth using a known velocity field.
Time-to-depth conversion is formulated as an iterative
procedure producing a depth model which minimizes the
differences between zero-offset picked traveltimes and
times derived by normal-incidence ray tracing through
the model. The input data consist of traveltimes picked
from unmigrated stacked sections, as well as assumed
interval velocities in each layer. The method can be
applied to models with discontinuities such as pinchouts
and faults. To illustrate the method, synthetic and field
data examples are included.

INTRODUCTION

In seismic exploration, inversion can be defined as the
estimation of subsurface physical parameters, such as wave
velocity, density, etc. Traveltime tomography uses the travel
times picked at a range of offsets to determine simultaneously
the velocities and interface positions (Bishop et al., 1985). The
simplest facet of inversion is the determination of only the
geometry of the reflecting interfaces when the seismic velocity
is assumed to be known; i.e., time-to-depth conversion. Two
widely used methods for time-to-depth conversion are

(I) Simple multiplication of zero-offset times picked
on migrated stack sections by average velocity func
tions and

(2) ray map migration (May and Covey, 1981).

The approach outlined below finds a vector of parameters
which minimizes some measure of misfit, the objective
functionf(6), where 6 contains the parameters of the model
(Goldin, 1988). We show that this approach is stable in the
presence of velocity and traveltime picking errors and that it
permits the use of a priori information about the medium.

Determining the geometry of the subsurface when the
velocity is known requires only zero-offset ray tracing and
traveltime picking and is much faster and less expensive than
tomography. The zero-offset case can be considered a single
step in a "poor man's tomography" in which one solves
iteratively tor interface positions and velocities. The same
results can also be achieved by iterating between velocity
depth models and depth migration.

DESCRIPTION OF THE METHOD

We assume that the real medium can be modeled as a
sequence of layers separated by interfaces, the location of
which must be determined commencing from an initial esti
mate. Velocity estimation is not considered in this work and,
therefore, it is assumed that the interval velocities in each layer
are known from well information or from previous interpreta
tion of seismic data. Data consist of picked zero-offset travel
times of primary reflections, which can be obtained from
interpretation of unmigrated stacked sections. Time-to-depth
conversion is performed iteratively layer after layer. Despite
the obvious drawback of this "top down" strategy, i.e. error
accumulation, it has the advantage of allowing a "friendly
interaction" between interpreter and computational process.

For a particular layer, the iterative procedure consists of
the following three main steps:

(I) Normal-incidence rays are traced through the
initial depth model, producing a set of calculated
zero-offset traveltimes.

(2) The changes in the location of the interface, as
defined by the geometrical parameter vector 6, are
determined by minimizing the measure of misfit (objec
tive function) between the picked and the computed
traveltimes.

(3) A new location for the interface is obtained by
updating the set of geometrical parameters.

The iterative search for the parameter estimates termi
nates when the objective function is less than a specified
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value. The convergence of the algorithm depends mainly on
the following factors:

parameterization of the model;
choice of an objective function;
method of minimizing the objective function; and
use of a priori information.
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Objective function and minimization algorithm

where X mil' Z mil are, respectively, the horizontal coordinate
and the depth of the mth node point along the nth layer.

In our algorithm, the components of the parameter vector
are the vertical coordinates of nodes connected by a cubic
spline and, optionally, the horizontal coordinates of node
points. This type of parameterization permits us to describe
different types of structural elements, i.e., faults, pinchouts.
When describing an interface, it is sufficient in most cases to
estimate the vertical location of node points, while their hori
zontal coordinates can be fixed. For complex structures,
horizontal coordinates are also included in the parameter
vector search.

Figure 1 shows the parameterization of a synthetic model
with three layers. The dots denote the node points of the
interfaces which determine the structural geometry and
compose the vector of geometrical parameters 9.

Parameterization of the model

The real medium is replaced by a parametric model in
which the reflecting interfaces are described by a vector set
of parameters
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FIG. 1. Synthetic depth model: true model (solid lines) and
initial model (dashed lines).
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The squared error between picked and calculated zero
offset traveltimes was chosen as the objective function, i.e.,

(2)

where i ~k is the picked time of the nth reflector at the kth
midpoint, and i ~k(9) is the modeled zero-offset traveltime.

In order to minimize the objective functionf(9), we used the
subroutine VA05A from the Harwell Subroutine Library
(Powell, 1984). This subroutine is based on a method combin
ing three different algorithms: Newton-Raphson, steepest de
scent, and Marquardt (for a geophysical example, see Gold
man, 1988). We terminated the optimization process when the
rms error Vfi.9)/N became less than our threshold value.

A priori information

FIG. 2. Time model corresponding to the depth model
shown in Figure 1. Dots denote picked traveltimes, and solid
lines show the final time model.

A priori information on the structure of the medium plays
a particularly important role in inversion. One way of using
a priori information is to constrain some parameters. Let the
goal be to minimize the objective function f(9) for a reason
able range of ae»

amin < a < amax
e e e,

Downloaded 06 Jun 2012 to 72.20.129.98. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Optimum Time-to-depth Conversion 1003

Examples

After this transformation, an unconstrained optimum in e/
space is sought. The periodicity of the optimum solution
requires us to select an optimization step small enough to
prevent jumping from peak to peak (Box, 1966).
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FIG. 5. Time section from a synthetic model obtained using
finite-difference modeling.
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The initial model is illustrated in Figure I by dashed lines.
The program converged to the minimum after six iterations
with an rms error of less than 2 ms. Figure 3 illustrates the
convergence of the first reflector. For the second layer, the
vector of parameters 6 consists of seven depth values and
the horizontal location of the pinchout, which we restricted
to the range 340-380. The program converged after seven
iterations, with an rms difference between the input and
calculated times of less than 4 ms.

For the last interface. the vector of unknown parameters
included only the vertical locations offive node points. The rms

(3)
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where ar in and arax are the a priori lower and upper values
of the fth parameter at. To solve the constrained problem.
the following transformation of the parameter value is car
ried out (Box, 1966):

Figure 1 shows a synthetic depth model with three layers.
Zero-offset traveltimes for this model (the dots in Figure 2)
are obtained by tracing normal rays through the model.
Times, along with the interval velocities, are used as input
for the process. The discontinuity in traveltimes between
stations 198-200 in the first layer indicates a discontinuity in
depth, i.e., the existence of a fault.

The first interface was described by a spline function with
eight node points (the closed circles on Figure I). The
unknown parameters are the vertical positions of all of the
nodes and the two horizontal locations of the discontinuity.
namely, X 3 and X 4' constrained to be within the range
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FIG. 3. Convergence of the location of the first reflector.
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FIG. 4. Depth model (solid lines) and final model (dashed
lines) for the second reflector after seven iterations when
random noise was added to the picked traveltimes for the
second reflector.
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FIG. 6. Traveltimes corresponding to the synthetic time
section shown in Figure 5. Dots represent picked times; solid
lines represent the calculated times for the final model.
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4000 mI.

error for this interface was about 2 ms. The final depth model
for all three interfaces virtually coincides with the true
model.

We illustrate the stability of the proposed method by
adding random noise at the rms level of about 8 ms to the
picked traveltimes for the second layer. The parameters
were the depth location of node points and the horizontal
location of the pinchout. The true model and the final model
after seven iterations are shown in Figure 4. Although the
rms error for the traveltimes was about 10 ms (similar to the
noise level), the final model is very close to the true model.

Figure 5 shows a time section from a three-layer model
obtained using finite-difference modeling. Figure 6 displays the
picked times from only the reflections clearly seen on the time
section.

In this example we used a priori information about the
presence of a pinchout for the second reflector and a fault for
the third. Figure 7 shows a depth section of the model. The
search variables for the first layer were the depths of eight node
points. The algorithm converged to the final model after six
iterations. The rms traveltime error was about 3 ms. The
second interface is defined by six unknown vertical nodes and
the horizontal location of the pinchout. We restricted the range
of search for the location of the pinchout to between 500 and
600 m. The algorithm converged for the second layer after 15
iterations. The rms traveltime error was about 4 ms. From
Figure 7, we can see that the final model is very close to the
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FIG. 7. Velocity-depth model corresponding to the time
section shown in Figure 5. The final model corresponds to
the thick dashed line, the true model to the solid line, and the
initial model to the thin dashed line.
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FIG. 8. Stacked seismic section.
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true model. The search for the third layer was divided into two
steps. First, we looked for the right side of the layer from the
discontinuity and then for the left side of the layer. For each
side of this layer, the rms traveltime error was about 8 ms.

Figure 8 shows a stacked section of a real seismic line with
7 m CMP spacing. The picked times obtained by interpreting
six clear reflectors are shown in Figure 9. There is a disconti
nuity in the fifth reflector at CMP 170and in the sixth reflector
at CMP 200. These discontinuities in the time section indicate
faults at depth. The layer velocities, which were obtained from
well information, are 2200, 1700, 2100, 2230, 2600. and DOO
mis, respectively. Note the sparseness of the picked times in
Figure 9, and their inadequate portrayal of the "plateaus" on
reflections I through 4 under CMP 160, Figure 8.

Figure 10 represents the depth section, and Figure 9
contains the corresponding traveltimes. For the fifth and
sixth reflectors, the parameters included the horizontal lo
cations of the faults. The rms traveltime errors for the first,

second, third, and fourth reflectors were less than 3 ms,
whereas for the last two reflectors, the error was about
7 ms. The relatively large error can be explained by the
complexity of these reflectors.

Computation time for the time-to-depth conversion proce
dure depends on the number of layers and on the complexity
of the model. The real data example required about 30 s of
CPU time on an IBM 4341 computer.

Several important points should be stressed: the proposed
method is not an automatic procedure for depth model
construction, but rather is proposed as a quick interpretation
tool for time-to-depth conversion for an interpreter with
access to a workstation. Therefore, the final model depends
upon the assumption of known velocity, initial guess, loca
tion of node points. and a priori information.

CONCLUSIONS

The advantages of the proposed approach are

FIG. 9. Time model for the stacked section of Figure 8. Dots
represent picked times; solid lines represent calculated times
from the final model.

FIG. 10. Depth section corresponding to the stacked section
in Figure 8. The final model is represented by solid lines and
the initial model by dashed lines.
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(a) good agreement between input times and those
calculated for the final depth mode;

(b) stability in the presence of picking errors;
(c) validity of the proposed method for both homo

geneous and inhomogeneous media;
(d) use of a priori information in a very convenient

form: and
(e) simple treatment of structurally complex cases.
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