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Solution of the equations of dynamic elasticity by a 
Chebychev spectral method 

D. Kosloff*, D. Kessler+, A. Q. Filhos, E. Tessmer**, A. Behles, and R. StrahilevitzS 

ABSTRACT 

We present a spectral method for solving the two- 
dimensional equations of dynamic elasticity, based on 
a Chebychev expansion in the vertical direction and a 
Fourier expansion for the horizontal direction. The 
technique can handle the free-surface boundary con- 
dition more rigorously than the ordinary Fourier 
method. 

The algorithm is tested against problems with 
known analytic solutions, including Lamb’s problem 
of wave propagation in a uniform elastic half-space, 
reflection from a solid-solid interface, and surface 
wave propagation in a half-space containing a low- 
velocity layer. Agreement between the solutions is 
very good. A fourth example of wave propagation in a 
laterally heterogeneous structure is also presented. 
Results indicate that the method is very accurate and 
only about a factor of two slower than the Fourier 
method. 

INTRODUCTION 

This work presents a spectral method for the solution of 
the equations of dynamic elasticity in two spatial dimen- 
sions. The method is based on a spatial discretization on a 
grid in which the solution is approximated by a Chebychev 
expansion in the vertical direction and a Fourier method in 
the horizontal direction. This discretization yields an algo- 
rithm with spectral accuracy which is not periodic in the 
vertical direction. Consequently, unlike the Fourier method, 
the free-surface boundary condition can be incorporated 
easily. 

The problem of expressing the free-surface boundary 
condition with grid methods is not always simple. The 

free-surface boundary condition is especially difficult with 
high-order schemes. Whereas for finite elements or low- 
order finite differences the free-surface condition can be 
applied with the same level of accuracy as the method itself 
(e.g., Vidale and Clayton, 1986), for the fourth-order finite 
differences only an approximation to the condition has been 
found (Baylis et al., 1986; Levander, 1988). Furthermore, for 
the spectrally accurate Fourier method we had to resort to 
“zero padding,” effectively including a region above the 
surface of the earth with a velocity value of zero (Kosloff et 
al., 1984). Whereas for small angles of incidence (or, equiv- 
alently, at a large depth beneath the surface) this approxi- 
mation yields acceptable results, for larger angles of inci- 
dence the time histories become ringy. An example of this 
behavior is shown in Figures la and lb which present 
comparisons between the Fourier method and analyticai 
solutions for Lamb’s problem of wave propagation in a 
homogeneous half-space. In this example the source was 
located at a depth of 20 m beneath the free surface and had 
a Ricker wavelet time history with peak frequency at 11 Hz. 
The P-wave and S-wave velocities were, respectively, 2000 
m/s and 1155 m/s. Figure la, which presents horizontal 
displacements on the surface at a distance of 1200 m from the 
source, appears ringy. Conversely, the comparison between 
numerical and analytical results in Figure lb, which is for a 
point located at a depth of 400 m beneath the surface in the 
same horizontal position, is much better. 

The free-surface boundary condition is important for 
exploration geophysics. First, an accurate representation of 
the seismic source must account for reflected and converted 
phases from the surface. Second, evaluating ground roll and 
wave propagation in the weathered zone in general is impor- 
tant. We therefore believe it is desirable to have a modeling 
scheme which can handle these phenomena accurately. In 
this study we examine the possibility of using an algorithm 
based on a Chebychev expansion in the vertical direction. 
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The Chebychev method has been described extensively in 
the mathematical literature (e.g., Gottlieb and Orszag, 1977; 
Canuto et al., 1987, for a review). As with the Fourier 
method and finite differences, the algorithm uses a spatial 
mesh to approximate the solution. However, the grid is no 
longer uniform in the vertical direction, but rather is finer 
toward the boundaries (Figure 2) The degree of refinement 
of the mesh toward the boundaries is controlled by a 
mapping into another coordinate system. Since numerical 
stability depends on the size of the smallest grid spacing, this 
mapping enables one to achieve a proper balance between 
fulfillment of the surface boundary conditions and numerical 
efficiency. As we show, the method accounts for the free- 
surface boundary condition and is very accurate. It is also 
comparable in speed to the ordinary Fourier method. 

In the following sections we describe the Chebychev 
modeling scheme and discuss its properties. We next present 
a comparison between numerical and analytical calculations 
for problems with known solutions and an example of wave 
propagation in a laterally heterogeneous medium. 

EQUATIONS OF DYNAMIC ELASTICITY 

The numerical algorithm is based on a solution of the 
equations of conservation of momentum combined with the 

(4 ++- ANALYTIC SOLUTION 

- NUMERICAL SOLUTION 

(b) ++I++ ANALYTIC SOLUTION 

- NUMERICAL SOLUTION 

FIG. 1. Comparison between the Fourier and exact solutions 
for Lamb’s problem with a source depth of 20 m and P-wave 
and S-wave velocities of 2000 m/s and 1155 m/set, respec- 
tively. (a) Geophone located at horizontal distance of 1200 m 
at the surface. (b) Geophone located at horizontal distance 
1200 m at a depth of 400 m beneath the surface. 

stress-strain relation for an isotropic elastic solid undergoing 
infinitesimal deformation (e.g., Fung, 1965). For two spatial 
dimensions the equations of momentum conservation are 
given by 

(1) 

where x and y are the horizontal and vertical coordinates, 
respectively, u, and lly are the horizontal and vertical 
displacement components, u,~~, u,~,‘, and uyp are the stresses, 
f, and ji, are the body forces per unit volume, and p denotes 
the density. In equation (1) as in the remainder of this work 
a dot above a variable denotes time differentiation. 

The stress-strain relation for an isotropic elastic solid 
expressed in terms of displacement derivatives reads 

and 

(2) 

where A and p. are, respectively, the rigidity and the shear 
modulus. 

Equations (1) and (2) are sufficient to determine the 
deformation history of the body once boundary conditions 
have been specified. For the earth’s surface, the condition is 
of zero traction. Assuming a flat surface and with our choice 
of coordinates, this condition reads 

FREE SURFACE Y-O 

DX RIGID SURFACE 

FIG. 2. Typical mesh for the Chebychev algorithm. 
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(3) 

For the numerical algorithm described in this study, equa- 
tions (1) and (2) are recast as a system of five coupled 
first-order equations given by 

where 

[ 

0 0 lip 0 0 
0 0 0 0 lip 

fJ= h+2P 0 0 0 

A 0 0 0 

0 P 0 0 0 1 (5) 
0 

0 

0 
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P 0 

000. 1 
0 0 0 
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This is the same system as used in Levander (1988), Virieux 
(1986), and Bayliss et al. (1986) (after correction of typo- 
graphical errors). 

THE SOLUTION SCHEME 

The numerical algorithm solves equation (4) subject to the 
boundary conditions (3). The seismic source is introduced 
through the body force term. The variables are discretized 
on a spatial grid which is uniform in the x direction and 
nonuniform in the y direction (Figure 2). The grid points in 
the 4’ direction are calculated by a mapping yj = yj(zj) from 
the Chebychev sampling points zJ = cos (nj/N), j = 0, . . . N, 
with N + 1 the number of grid points in they direction. (This 
mapping is discussed in a later section.) Equation (4) con- 
tains both spatial and temporal derivatives. For advancing 
the solution in time we use a fourth-order Runge-Kutta 
method. Horizontal derivatives are calculated by the Fourier 
method (Gazdag, 1981; Kosloff and Baysal, 1982). For the 
vertical derivatives we use a discrete Chebychev expansion 
and the recursion relation for the coefficients of the deriva- 
tive (Gottlieb and Orszag, 1977). The advantage of this 
expansion is that it can be calculated via a variant of the fast 
Fourier transform (FFT) for the cosine transform (Gottlieb 
and Orszag, 1977; Press et al.. 1986). For completeness, we 
summarize below the main details of the Chebychev deriv- 
ative approximation. 

FIG. 3. Comparisons between numerical and analytical horizontal displacement solutions for Lamb’s problem (a) at 
a horizontal distance of 50 m from the source at a depth of 0.9 m, (b) at a horizontal distance of 700 m from the 
source at a depth of 0.9 m, and (c) at a horizontal distance of 200 m from the source at a depth of 360 m. 
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We consider a finite piecewise continuous function f(z) 
where -1 5 z I 1 (results for a different interval can be 
obtained after scaling). When the sampling points are 4 = 
cos (n/N)j, with j = 0 . . . N, the discrete Chebychev 
expansion off(z) is given by 

fkj) = 2 akTLkj)~ j=O,...,N (7) 
k=O 

(Hamming, 1978). The coefficients uk are given by the 
discrete transform 

k#o 

k = 0, or N, ’ 
(8) 

where 

t _) j=O,orN 
a, = 

1, otherwise 

(Hamming, 1978). As with the discrete Fourier transform, 
the coefficients uk match the coefficients of the continuous 
Chebychev expansion when the functionf(z) is band-limited. 
Here the band limitedness is in the sense that the function 
should be expressible as a polynomial of order up to N. 

64 

Assuming f(z) is band-limited, its derivative can be ex- 
panded by 

F= 2 bl,Tk(zj), j = 0, . . . , N. (9) 
k = 0 

The coefficients bk are related to the coefficients ak in 
equation (8) by the downward recursion relation 

FIG. 5. Grid configurations for the problem of two solids in 
planar contact. 

FIG. 4. Comparisons between numerical and analytical vertical displacement solutions for Lamb’s problem (a) at a 
horizontal distance of 50 m from the source at a depth of 0.9 m, (b) at a horizontal distance of 700 m from the source 
at a depth of 0.9 m, and (c) at a horizontal distance of 200 m from the source at a depth of 360 m. 
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1 time = 0.25 set 

(a) 

time = 0.5 set 

(b) 

time = 1 .O set 

FIG. 6. Vertical particle velocity snapshots for the two solids problem at times: (a) t = 0.25 s, (b) t = 0.5 s, and (c) 
t = 1 s. 
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hk_, =bb+l +2kak, k=N,...,2. (10) 

and 

2al + b? 
ho = 

2 * 

with starting values bN+, = h,v = 0 (Gottlieb and Orszag. 
1977). 

Relations (7), (S), (9), and (10) allow the calculation of a 
Chebychev derivative approximation. Given a sampled func- 
tionf(zj), the coefficients ak can be calculated from equation 
(8) by a variant of the FFT (Gottlieb and Orszag, 1977; Press 
et al., 1986). Then the coefficients b, can be calculated by 
equation (10). The derivative df/dz is finally obtained after a 
transform of the coefficients hL according to equation (9). 
The computational effort of the whole process is comparable 
to the effort in the Fourier derivative approximation (e.g., 
Kosloff and Baysal, 1982). 

BOUNDARY CONDITIONS 

The free-surface boundary condition requires zero values 
for (T,~) and w,,,~ on the surface v = 0. However, as was shown 
in Gottlieb et al. (1982) and Bayliss et al. (1986) direct 
application of this condition without regard to the other 

(a) 

variables i4,r, &, and ol* can lead to numerical instability. 
Stabilization can be achieved by requiring that outgoing 
characteristic variables remain unmodified after application 
of the boundary conditions (Gottlieb et al., 1982). For the 
free-surface boundary condition at y = 0 this implies 

and 

(Bayliss et al., 1986), where ljp and 71, denote the p and s 
velocities respectively. The superscripts (old) and (new) 
denote values of variables before and after application of the 
boundary condition, respectively. Thus in a typical calcula- 
tion, first the operator on the right-hand side of equation (4) 
acts on a vector of variables (ir,, it,, CT,, , vyy, u,,,)~ to yield 
an output vector which is then updated according to the 
procedure above. 

For the boundary at the bottom of the grid we use the 

x = 10001 

H = E6m 

FIG. 7. Comparisons between numerical and analytical horizontal displacement solutions for the two-solids problem 
(a) at a horizontal distance of 300 m from the source at a height of 66 m above the interface, (b) at a horizontal 
distance of 1000 m from the source at a height of 66 m above the interface, and (c) at a horizontal distance of 
300 m from the source at a height of 440 m above the interface. 
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nonreflecting condition described in Bayliss et al. (1986). 
The corresponding procedure reads 

axy ‘new) = 0.5 [cry’ - pusLpd’], 

i((new’ = 0.5 [Q’d’ - (T7;d’jpy,,], 
x 

uJY (new’ = 0.5 [uj,p’ - p.i’plI;.“‘d’], 

/iCnew) = 0.5 [icyd’ - a~,;‘d’lpvp], 
Y 

uxx (new’ = ,,.@;d’ + --& [up - agq 
This condition reduces reflections from the bottom of the 
grid; however, it does not eliminate them completely (par- 
ticularly for nonvertical angles of incidence). An absorbing 
region was added along the sides and bottom of the grid to 
prevent wraparound and boundary reflections (Cerjan et al., 
1985; Kosloff and Kosloff, 1986). 

IMPROVEMENT OF STABILITY THROUGH 
A COORDINATE TRANSFORMATION 

As in all grid methods, the Chebychev mesh should be 
chosen fine enough to resolve all wavenumber components 
in the problem. Furthermore, the boundary conditions need 

FIG. 8. Comparisons between numerical and analytical vertical displacement solutions for the two-layer problem (a) 
at a horizontal distance of 300 m from the source at a height of 66 m above the interface, (b) at a horizontal distance 
of 1000 m from the source at a height of 66 m above the interface, and (c) at a horizontal distance of 300 m from 
the source at a height of 440 m above the interface. 

to be represented accurately. Experience and sampling 
considerations indicate that the grid spacing in the center of 
the mesh should be chosen smaller than half the shortest 
wavelength component in the propagating pulses. Thus the 
grid needs to be scaled from [- 1, 11 to the actual dimension 
of the problem. However when the mesh size is doubled with 
the Chebychev method, the grid spacing in the vicinity of the 
boundary decreases by a factor of two (or by a factor of four 

FIG. 9. Grid configuration for the thin-layer problem. 
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in the original grid before scaling). This is unlike with finite 
differences or the Fourier method where the grid spacing 
remains constant. The stable time step size decreases ac- 
cordingly, thus making the Chebychev method prohibitively 
expensive. To circumvent this problem, we introduce a 
coordinate transformation by which the grid spacing in the 
vicinity of the boundary remains practically constant for 
different grid sizes, and yet is small enough to resolve the 
boundary conditions properly. This coordinate transforma- 
tion is discussed in more detail in Kosloff and Tal-Ezer 
(1989). 

Let z denote the coordinate of the original Chebychev 
mesh spanningthc region [-- 1 in I! and y a coordinate system 
which is obtained fromthe z systemby at&msformation )I = 
y(z). Given a functionf(y), its derivative can be calculated 
by the chain rule 

(4 

(b) 

time = 0.50 set 

df df dz -- 
dy = dz dy ’ 

where dfldz can be calculated via the FFT as previously 
explained. For the transformation y = y(z), we chose 

where 

b = 0.5 (Y-l (p-2 - 1) 

and 

c = 0.5 (Y-2 (p-2+ 1) - 1. 

time = 1 .O set 

FIG. 11. Vertical particle velocity snapshots for the thin-layer problem, at times (a) f = 0.5 s, (b) I = 1 s. 



Chebychev Spectral Solution of Elasticity 743 

CI and p are two parameters which need to be specified. The 
derivative (dzidy) is then given by 

2 = (1 + bz + cz2)“?. 

Itcanbeshownthatatz= -l,(dzldy)=c~~‘,andatz= 1, 
(dzldy) = (c+-‘. Thus (Y represents the amount of grid 
stretching at the boundary z = - 1 while the grid size at z = 
0 remains unchanged, whereas c@ indicates the stretching at 
the other end. In addition, the grid of they system is resealed 
to have the largest grid spacing allowed by sampling consid- 
erations. By taking a proportional to the grid size N, one 
obtains a constant grid size in the vicinity of the boundary. 
In the following examples values of (Y = 0.06 N and p = 2 
were used. The resulting time step size was that which would 
normally be used with the Fourier method for the same 
temporal integration scheme. 

EXAMPLE 1: LAMB’S PROBLEM 

In this example of wave propagation in two-dimensional 
uniform half-space bounded by a free surface we compare 
numerical results to an analytic solution based on Cagniard’s 
technique (Burridge, 1976). The P-wave and S-wave veloc- 
ities of the medium were 3000 m/s and 500 m/s, respectively, 
corresponding to a Poisson’s ratio of 0.473. The grid size was 

(4 L_i_LL 

c 

(1 

225 in the horizontal direction and 161 in the vertical 
direction with dx = dy = 10 m, where dy is the largest 
vertical grid spacing (Figure 2). A vertical point fbrce was 
applied at one grid point beneath the surface at the 25th grid 
line at a depth of 0.9 m. The source had a Ricker wavelet 
time history with a high-cut frequency of 22 Hz (or, equiv- 
alently, a peak frequency at I1 Hz), which is approximately 
the same frequency band which would normally be used with 
the Fourier method. The calculations were carried out to a 
time of 2 s with a time step size of 1 ms. Absorbing boundary 
regions were used along the bottom and sides of the numer- 
ical mesh. The absorbing regions contained 18 points (Ko- 
sloff and KoslofY, 1986). 

Figures 3a and 3b compare numerical and analytical 
horizontal displacement time histories for points 0.9 m 
beneath the free surface at horizontal distances from the 
source of 50 m and 700 m, respectively. Figure 3c presents a 
comparison at a point at a depth of 360 m at a horizontal 
distance of 200 m from the source. The agreement between 
numerical and analytical solutions is very good. A similar 
comparison for the vertical displacements (Figures 4a-4c) is 
of equal quality. 

EXAMPLE 2: TWO SOLIDS IN PLANAR CONTACT 

This example examines the capability of the Chebychev 
algorithm to handle sharp veiocity contrasts. The structure 

FIG. 12. Comparisons between numerical and analytical horizontal displacement solutions for the thin-layer 
problem at a depth of 0.9 m, (a) at a horizontal distance of 500 m from the source, (b) at a horizontal distance of 
1000 m from the source, and (c) at a horizontal distance of 1700 m from the source. 
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consists of two different elastic regions separated by a 
horizontal interface (Figure 5). The material parameters were 
VP = 2000 m/s, V, = 1155 m/s, and p = 1.2 g/cm3 for the 
medium with the source, and V, = 3000 m/s, V,y = 1500 m/s, 
and p = 2.3 g/cm’ for the lower medium. The calculations used 
the same grid as in the previous example. The shot was located 
66 m above the interface and had a Ricker wavdet time history 
with a high-cut frequency of 42 Hz. The time step size was I ms 
and the calculations were carried out to 2 s. 

Figures 6a-6c represent vertical particle velocity snap- 
shots at respective times of 0.25 s, 0.5 s, and 1 s. In Figure 
6a, which is at an early time only the reflected and trans- 
mitted P wavefronts are well developed. However, a Stone- 
ley wave with a large amplitude on the interface can be seen, 
too. In Figure 6b, both P and S reflected pulses are distin- 
guishable. In addition, a P head wave characterized by a 
planar wavefront is also present. In Figure 6c the reflected 
P-wave has practically passed by and been absorbed along 
the boundaries, and a strong surface multiple can be ob- 
served propagating downward. 

Figures 7a-7b and Figures 8a-8c present single-trace 
comparisons between numerical results and an analytical 
solution for two solids based on Cagniard’s technique. The 
receiver locations are shown in Figure 5. The comparison 
between the solutions for the layer reflection events is very 
good. However, because the analytical solution does not 

include free-surface reflections, these are present only in the 
numerical results at later times. 

EXAMPLE 3: A THIN LOW-VELOCITY LAYER 

This problem considers wave propagation in a structure 
consisting of a thin horizontal layer overlying a uniform 
elastic half-space (Figure 9). The material parameters of the 
layer were P-wave and S-wave velocities of 2000 m/s and 
1155 m/s, respectively, and a density of 1.2 gicm3. The 

r 

1 ‘VD = 3800 rn,s 

/ ‘9s = 1500 m/s 

, Dee = 2.0 
I 

Absorb, * 

vp=2000 m/s 

Vs=l150 m/s / 

Den=l.2 
/ 

-_-________d 

ReglO" 

Fro. 14. Grid configuration for the vertical interface problem. 

(b) 

4” - 

i- 

L 

FIG. 13. Comparisons between numerical and analytical vertical displacement solutions for the thin-layer problem 
at a depth of 0.9 m (a) at a horizontal distance of 500 m from the source, (b) at a horizontal distance of 1000 m from 
the source, and (c) at a horizontal distance of 1700 m from the source. 
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half-space parameters were velocities of 3000 m/s and 1500 
m/s and a density of 2.0 g/cm3. The layer thickness was 
60 m. A vertical point force was applied at one grid point 
beneath the surface at a depth of 0.9 m and at a horizontal 
position of 25 grid points from the boundary. The grid, 
source time history, time-step size, and total time were the 
same as in the previous example. 

Figure 10a presents a horizontal displacement time section 
at a depth of 0.9 m. The structure of this example generates 
strongly dispersive surface waves which appear as a series of 
trapped multiples followed by the main Rayleigh wave. This 
can also be seen in the vertical particle velocity snapshots, 
Figures 11 a and 11 b. In these figures the body waves consist 
of progressing cylindrical wavefronts which can be followed 

(4 time = 0.5 set 

azimuthally, except in the vicinity of the free surface where 
the phase is changed. For comparison, Figure lob presents a 
time section calculated analytically based on the propagator 
matrix approach (e.g., Aki and Richards, 1980). The time
section appears similar to Figure IOa, except that some 
multiples with P-wave velocity moveout are absent from it. 

A detailed comparison of single traces of horizontal and 
vertical displacements is shown in Figures Ea-i2c and 
Figures 13a-13c, respectively. The numerical and analytical 
results appear close, although the fit is not as good as in the 
previous examples. This may be because the analytical 
calculation does not account for body waves, which do have 
significant amplitudes, in particular at times earlier than the 
arrival time of the main Rayleigh pulse (Figures lla and 

time = 0.75 set 

FIG. 15. Vertical particle velocity snapshots for the vertical interface problem, at times (a) f = 0.5 s, (b) I = 
0.75 s, (c) t = 1 s, and (d) t = 1.25 sec. 
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llb). In addition, the seismograms are very sensitive to the solution is the same as for a uniform half-space. Unlike 
small changes in layer thickness (in numerical calculations 
there is always an uncertainty to within a grid spacing as to 

in the previous example, the pulses appear sharp and the 

where the exact layer boundaries are). 
Rayleigh wave is nondispersed. In Figure 15b, the P wave- 
front has already reached the vertical interface and gener- 

EXAMPLE 4: A STRUCTURE WITH A VERTICAL INTERFACE 

The structure in this example consists of two elastic 
regions separated by a vertical interface (Figure 14). The 
grid, source location, source time history, and time-step size 
were the same as in the previous example. This problem 
serves as a test of the modeling algorithm when all the 
material parameters vary laterally. 

Figures Ha-15d present vertical particle velocity snap- 
shots at times 0.5 s, 0.75 s, 1 .O s, and 1.25 s, respectively. In 
Figure 15a the waves have not yet reached the interface and 

ated reflected and transmitted P and S wavefronts. In 
Figures 15~ and 15d transmitted and reflected Rayleigh 
waves can be seen, as well as many other phases. Interest- 
ingly, Figure 15d shows that the collision with the vertical 
interface created a Stonely wave traveling downward along 
the interface. 

Figure 16 presents a horizontal displacement time section 
collected at a depth of 0.9 m beneath the surface. The 
incident, reflected, and transmitted Rayleigh waves are most 
prominent in this figure. Note that the Rayleigh wave im- 
pinging on the interface also created converted body waves. 

(c) time =l set 

Cd) time = 1.25 set 

FIG. 15. Vertical particle velocity snapshots . . continued. 
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T i me (secj 

FIG. 16. Horizontal displacement time section calculated numerically for the vertical interface problem at a depth 
of 0.9 m. 

CONCLUSIONS 

We have presented a new spectral method for elastic-wave 
calculations which is based on a Chebychev expansion in the 
vertical direction. The results so far indicate that the method 
presents an improvement over the ordinary Fourier method 
in handling the free-surface boundary condition. Compari- 
sons with analytical solutions have been good. The last 
example (with a vertical interface) indicates that the method 
can handle sharp lateral velocity contrasts across which the 
Poisson’s ratio and density vary as well. 

Compared with the efficiency of the ordinary Fourier 
method, the Chebychev algorithm requires more computer 
storage because of the need to solve the first-order system 
(4) and not equations (1) and (2) directly. Furthermore, the 
Runge-Kutta technique used in this study, for equal accu- 
racy, is about two times slower than second-order temporal 
differencing which can be used with the Fourier method. It 
therefore appears that some price in efficiency needs to be 
paid when using the Chebychev scheme, but probably less 
than a factor of two compared to the Fourier method. 
Further work is needed to determine whether more accurate 
and efficient time integration techniques such as the Tal-Ezer 
method (Tal-Ezer et al., 1987) can be used with the Cheby- 
chev algorithm. 

Extension of the method to more complicated material 
rheologies or to three spatial dimensions appears straightfor- 
ward. In particular, since staggered grids are not used, 
complete material anisotropy can be incorporated with only 
minor modifications of the solution scheme. 
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