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Elastic wave propagation using cylindrical coordinates 

David Kessler* and Dan KosloffS 

ABSTRACT 

A pseudo-spectral method for a solution of the 
equations of dynamic elasticity in cylindrical coordi- 
nates is based on the Chebychev expansion in the 
radial direction and the Fourier expansion in the 
angular direction and is suitable for simulating wave 
propagation in the vicinity of cylindrical objects. The 
numerical grid consists of a series of concentric rings, 
each one with a separate Chebychev-Fourier mesh. One 
numerical grid is defined for the cylindrical cavity and 
another grid for the medium around the cavity. Combin- 
ing these two numerical grids allows reduction of the 
number of grid points in the angular direction in the 
interior grid and thus increases the time step. This makes 
the use of polar coordinates much more economic. 

The numerical algorithm is applicable to any arbi- 
trary heterogeneous medium. 

INTRODUCTION 

The problem addressed in this work is two-dimensional 
elastic wave propagation in the vicinity of cylindrical ob- 
jects. The motivation for such a study is to simulate phe- 
nomena associated with boreholes. A two dimensional 
study, in which the cylindrical geometry is tackled, is a first 
step towards constructing a full 3-D simulator for borehole 
measurement techniques such as vertical seismic profiling. 

The algorithm described here is based on a direct solution 
in polar coordinates of the equations of momentum conser- 
vation and the stress strain relations for an isotropic solid. 
Solving in polar coordinates appears necessary because of 
the cylindrical geometry, since representing the cylindrical 
cavity using Cartesian coordinates would require a prohibi- 
tively fine spatial grid. 

The numerical algorithm presented is based on a Cheby- 
chev expansion of the solution in the radial direction and a 
Fourier expansion for the angular direction (Figure 1). 

Integration of the equations in time is performed by a fourth 
order Runge-Kutta technique. 

The numerical algorithm allows for complete material 
variability including fluids and solids in juxtaposition. 

The same type of expansion has been used previously by 
Kessler and Kosloff (1990) for acoustic waves. The radial 
Chebychev expansion allows incorporation of boundary 
conditions which in the present case are an absorbing 
boundary condition at the outer radius of the grid (1. = h), 
and a free-surface boundary condition on the cavity (r = N). 
In certain applications, a rigid boundary condition as well 
has been used for the cylindrical object. 

For the enforcement of the boundary conditions, we used 
a stabilization procedure based on characteristic variables as 
described by Gottlieb et al. (1982), and Baylis et al. (1986). 
Unlike previous work with the Chebychev method (Kosloff 
et al., 1990: Kessler and Kosloff, 1990), the solution used for 
the one-dimensional diagonalized system of equations is 
only approximate, and we have found that the stabilization 
procedure works only when the ratio between the interior 
radius of the grid and the exterior radius is not too great. We 
thus adopted a multidomain approach in which the numerical 
grid consists of a series of concentric rings, each one with a 
separate Chebychev mesh (Tessmer et al., 1992). The continu- 
ity of the solution between the rings is enforced by using 
characteristic variables. Unlike with cylindrical grids in gen- 
eral, this approach allows a relatively uniform spatial sampling 
when needed or to change grid spacing in different regions. 

The next section contains the equations of dynamic elas- 
ticity and the solution technique. The following one de- 
scribes characteristic variables for the enforcement of 
boundary conditions and the multidomain approach. Finally, 
numerical examples test the algorithm against problems with 
known analytical solutions and demonstrate physical effects 
associated with the presence of the cylindrical cavity. 

EQUATIONS OF MOTION AND SOLUTION SCHEME 

The numerical algorithm is based on a solution of the 
equations of conservation of momentum combined with the 
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stress-strain relation for an isotropic elastic solid undergoing 
infinitesimal deformation. For two dimensional cylindrical 
coordinates (Y, 0) the equations of momentum conservation 
are (Fung, 1965): 

and 
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where U, and U, are the displacements in r and 0 directions; 
u,, , (TOO, and uro are the stress components; J; and fe are 
body forces per unit volume, and P is density. The stress- 
strain relations for an isotropic elastic solid expressed in 
terms of displacement derivatives in cylindrical coordinate 
are: 
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FIG. 1. Configuration of the problem, r = a marks the cavity 
and r = h marks the edges of the grid: n can be very small. 

where h and P are respectively the rigidity and the shear 
modulus. 

The treatment of the boundary conditions requires con- 
current values of the variables 0,. , 0,) ur,., uoe, and urO. 
Thus we recast equations (1) and (2) as a system of five 
coupled first order equations given by: 
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The numerical algorithm solves equation (3) with appropri- 
ate boundary conditions at r = (2 and at the edges of the 
numerical grid, at r = h (Figure I). The variables are 



2082 Kessler and Kosloff 

discretized on a spatial grid which is nonuniform in the r 
direction and uniform in the 0 variable (Figure 2). Equation 
(3) contains both spatial and temporal derivatives. The 
discrete Chebychev expansion is used in the r direction, a 
periodic Fourier expansion in the 0 direction (Kessler and 
Kosloff, 1990). time integration is performed by the fourth 
order Runge-Kutta method. The time step is limited by the 
smallest grid spacing, which is usually in the 0 direction. We 
have found empirically that the time step dt < 0.4.(rd0 )min/ 
V,,, where V,,, is the highest between the pressure or 
shear velocity present in the grid ensures stability. 

BOUNDARY CONDITIONS 

Three different types of boundary conditions are applied at 
the boundaries of the numerical grid. A free surface or rigid 
boundary condition is applied at r = N, while an absorbing 
boundary condition is applied at r = h (Figure I). In a typical 
calculation, the right hand side of (3) is calculated for the 
vector [ii,., i/, , CT,,, urB, crAR]’ over the whole grid. and 
then the values of the results are corrected at the boundaries. 
This is achieved by setting the correct characteristic varia- 
bles (Gottlieb et al., 1982; Baylis et al., 1986; Kosloff et al.. 
1990; Kessler and Kosloff, 1990). The five characteristic 
variables for the elastic wave equation are: 

(PI (5) 

where V, and V, are pressure- and shear-wave velocities 
respectively. 

The first two variables [((I) and (b)] represent motion 
propagating inwards. towards decreasing r with velocities 
V, and V,, respectively. The third and fourth variables [(c) 
and (d)] represent motion propagating outwards, again with 
velocities V,> and V,y, and the fifth term (e) represents 
one-dimensional strain compatibility. 

At r = u a free-surface boundary condition is applied by 
keeping the ingoing characteristic variables unchanged and 
zeroing (r,., and u,.~. This yields the five relations 
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where old and Ned, denote, respectively, values of variables 
before and after application of the boundary condition. 

At I’ = h the absorbing boundary condition is defined by 
keeping the characteristic variable describing motion prop- 
agating outwards unchanged and setting to zero the charac- 
teristic variable describing motion into the grid. The result- 
ing relations are: 

FIG. 2. Chebychev-Fourier two-dimensional polar numerical 
grid. 
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gates outwards are kept unmodified. For the combination 
point, the characteristic variable that describes energy that 
propagates inward and outward are kept unmodified. The 
values of [ ir,, ii,, , c,rr, ore, uRH I ’ at the nodes common to 
the two meshes are: 

(e) new _ 
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SOLUTION IN A MULTIGRID DOMAIN 

The system (3) contains four parts which are: operation in 
the radial direction, operation in the angular direction, 
source terms, and added terms. Stabilization is based on 
one-dimensional considerations in the radial direction. The 
third term of equation (3) includes divisions by r. When r = 
h is very large compared to r = a the system becomes 
unstable. This instability exists when b/a > 80. In order to 
keep the algorithm stable we adopted a multigrid approach. 
We construct a numerical grid such that the numerical 
algorithm is stable. and then add another grid at its edge, at 
r = h (Figure 3). In each grid we keep the ratio between the 
distance of the last and the first grid points smaller than 80, 
and thus the algorithm is stable in each part of the grid. 
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The combination of the two grids at their common bound- 
ary is implemented by using the characteristic variables of 
the wave equation. For the absorbing boundary condition 
the characteristic variables that describe energy that propa- i 
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where new is the value of the variable after the application of 
the boundary condition, and old(I) and old(2) are the values 
of the variable at the common point of the first and second 
grid, respectively, before the application of the boundary 
condition. This correction and the boundary conditions are 
applied at each time step. r = b (Figure 3) is the combination 
point for this configuration; absorbing boundary conditions 
are applied at r = L’. 

500 

Combining numerical grids enables us to use our numeri- 
cal method for any grid configuration. We can make a to be 
so small that it would be “unseen” by the wave fronts [see 
example in Kessler and Kosloff ( 1990)] and at the same time
we can enlarge c to be as big as we need. 

DISTANCE 
(IN METERS 

-250 

-500 I I I I I 
-400 -200 0 200 400 

DISTANCE 
(IN METERS) 

FIG. 3. Combination of two numerical grids (multidomain 
approach). 

The time step for the numerical algorithm is chosen 
according to the smallest grid spacing in the numerical mesh. 
A numerical scheme that is based on a cylindrical coordinate 
system is usually very expensive (in computation time) since 
the grid spacing in the angular direction is very small, and 
usually much smaller than the grid spacing in the radial 
direction. Combining grids can reduce the number of angular 
points in the interior grid (which covers a small physical 
space), to increase the angular grid spacing and thus, to 
increase the time step. Figure 4 shows a typical numerical 
grid constructed by two smaller grids. The interior part 
contains I25 angular direction nodes and the exterior part 
contains 225 angular direction nodes. The number of grid 
points in the radial direction is 45 in the interior part and 125 
in the exterior part. To match the boundary condition at the 
common grid points it is necessai-y to have the same number 
of grid points on each side. This is achieved by interpolating 
the values of one grid to the same number of points as the 
second one; after interpolation and applications of the 
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boundary conditions [equation (8)], a backward interpolation 
provides the variables at the original points. Forward and 
backward interpolations are performed using FFT’s. 

EXAMPLE: PROPAGATION IN A HOMOGENEOUS MEDIUM 

In order to ensure the validity of this method, we compare 
the numerical result with an analytical result. Figure 5 shows 
the configuration of this example. The source is a radial 
direction force at a distance of 163 m from the origin of the 
grid. Three receivers are considered; A is 222 m to the left of 
the origin of the grid, B is 358 m below the source and C is 
at the common grid point, 84 m to the right of the origin of 
the grid. The pressure-wave velocity in this example is 2000 
m/s and the shear-wave velocity is 1300 m/s. Figures 6a and 
6b show the radial velocity and the angular velocity snap- 
shots at six times. Figure 7 shows the time history seismo- 
grams that were recorded by receivers A, B, and C. The 
numerical results are plotted by the continuous lines. The 
analytical results, computed by the two-dimensional elasto- 
dynamic Green function (Aki and Richards, 1981) are plotted 
by dots. In all seismograms the first arrival is the pressure 
wave and the second is the shear wave. 

FIG. 4. A numerical grid composed of two parts,. each one 
with different number of nodes in the angular direction. 

EXAMPLE: PROPAGATION IN A REGION CONTAINING 
FLUIDS AND SOLIDS 

In a two-part numerical grid, different materials can be 
specified in each part. For example, a borehole filled with a 
liquid material can be placed with solid rock. In constructing 
the numerical grid for this type of experiment, the interior 
part of the grid propagates acoustic waves only (by setting 
the shear velocity to zero), and the exterior part of the grid 
propagates elastic waves. At the liquid-solid interface, we 
use the characteristic variables of the wave equation. 

0, and err are kept continuous by keeping unmodified 
the characteristic variables c,. 
i/, - l/pV, 

+ l/pV, urr and 
(Tag, which, respectively, describe motion 

radially toward and away from the origin of the grid with a 
velocity V, ; tree is found by the characteristic variable 
[X/h + 2p]urr - (Tag in the solid part, and geO = mrr in the 
liquid part; finally, c, is defined in the solid part using the 
characteristic variable o/e + I ip Vs crrB, where urB = 0. 

The following example demonstrates the ability to propa- 
gate waves in a solid medium that contains a cylindrical 
liquid cavity. The source is a radial direction force with peak 
frequency of 120 Hz at a distance of 163 m from the origin of 
the grid (Figure 8). The same three receivers as in the 
previous example are considered. C is located exactly on the 
liquid-solid interface. The velocity of the pressure wave in 
the solid part is 2000 m/s, the shear-wave velocity is 1300 
m/s, and the velocity of the pressure wave in the liquid is 

SOURCE 

RECEIVER C 

RECEIVER I3 

-3w -1t0 150 3&l 
DISTANCE 

(IN METERS] 

FIG. 5. Configuration of the problem. The numerical grid is 
composed of two parts. Receiver C is located at the interface 
between the two grids. 



FIG. 6. Wave propagation snapshots in a homogeneous medium. (a) Radial velocity field at times 0.06,0.08,0.12,0.16,0.2, and 
0.24 s. (b) Angular velocity field at times 0.06, 0.08, 0.12, 0.16, 0.2, and 0.24 s. 
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FIG. 7. Seismograms recorded in a homogeneous medium at 
the receivers in Figure 5. (a) Receiver A. (h) Receiver B. 
(c) Receiver C. 

1500 m/s. Figure 9 shows the radial and the angular velocity 
snapshots at six times. The pressure and shear waves are 
visible; the pressure wave travels faster in a solid than in a 
liquid. At the liquid cylindrical cavity, the shear wave is 
converted to P and then back to S. The two wavefronts that 
pass through the liquid zone are therefore, PP followed by 
SP converted waves. At later times, we can identify at the 
liquid-solid interface the surface waves which are called 
Scholte waves. Figure 10 shows radial particle velocity 
seismograms recorded by the three receivers. At receivers A 
and B the pressure arrival and the shear arrival are visible. 
Receiver B is located exactly below the source, thus the 
shear component on the seismogram recorded by this re- 
ceiver is very weak. At receiver C, which is located at the 
boundary, pressure and shear arrivals are followed by the 
Scholte surface waves. 

To determine the velocity of these surface waves a series 
of receivers are placed along a radial line at an azimuthal 
angle of zero degrees (Figure X). Figure 11 shows three radial 
particle velocity snapshots at three later times. At these 
three snapshots the surface waves propagate along the 
liquid-solid cylindrical interface. Figure 12 shows the time
section that was recorded by the radial line of receivers. 
Four events are marked on the time section. Event A is the 
pressure wavefront and event B is the shear wavefront. 
Event C is the first surface wave, arriving at time 0.47 s and 
event D is the second surface wave, arriving at time 0.72 s. 
The time difference between events C and D is the time that 
it takes the surface wave to travel along half of the circum- 
ference of the liquid cavity. The radius of this cavity is 84 m 

FIG. 8. Configuration of the problem. Liquid cylindrical 
cavity surrounded by an elastic medium. 



FIG. 9. Wave propagation in a liquid-solid medium. (a) Radial velocity field at times 0.04, 0.1, 0.16, 0.22, 0.26, and 0.3 s. 
(b) Angular velocity field at times 0.04, 0.1, 0.16, 0.22, 0.26, and 0.3 s. 
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FIG. 10. Seismograms recorded at receivers in Figure 8. 
(a) Receiver A. (b) Receiver B. (c) Receiver C. 

and thus its half circumference is 263 m. The surface waves 
speed in this example is therefore 974 m/s. 

COST CONSIDERATIONS 

About two times more grid points are needed in the 
angular direction than in the radial direction in order to have 
approximately square grid cells in the middle area of the grid 
with cylindrical coordinates. Also, at the origin of the grid, 
the angular grid spacing is about 10 times smaller than the 
radial direction grid spacing (using a Chebychev expansion 
in the radial direction). The very small grid spacing in the 
angular direction results in a very small time step. For a 
typical configuration, the time step might be 100 times 
smaller than this in a Cartesian configuration. A great 
improvement is achieved by using the multigrid approach. 
We can use very few grid points in the interior grid that 
covers a small space, and since the smallest grid size is 
located there we can increase the time step by a factor of 
three to ten, compared to the same correspondingly single 
grid configuration. The time step can also be increased by 
using a coordinate transformation (Kosloff et al., 1990). The 
Chebychev points x(i) = cos (in/N), i = 0, . . . , N are very 
dense at the boundaries. Using a coordinate stretching, we 
can define a different set of sampling points that is wider at 
the edges of the grid (Kosloff and Tal-Ezer, 1992). Using the 
above coordinate stretching WC can improve the cost of the 
numerical algorithm by a factor of two to ten. 

Using Chebychev sampling points requires use of smaller 
time steps than used with Cartesian coordinate system. If we 
wish to locate a small cylindrical cavity in the origin of the 
grid, we will use a time step increment that is about 10 times 
smaller than used with Cartesian coordinate system. For 
problems that include a bigger cylindrical body, the time step 
can be enlarged to be of the same order as that used in 
Cartesian coordinate system. 

CONCLUSIONS 

We have presented a new spectral algorithm for elastic 
wave propagation in 2-D cylindrical coordinates. The 
method is based on a multigrid approach where each subdo- 
main can have a different number of grid points. Having 
more than one grid enables reduction of the number of grid 
points in the interior grid and thus to significantly increase 
the time step. In each subgrid we use the Chebychev 
expansion in the radial direction. The Chebychev points are 
very dense at the boundaries which facilitates application of 
the boundary conditions as well as the combination of the 
different grids. By using a coordinate transformation, the 
distance between the spatial points can be enlarged and thus 
the time step can be bigger. For the geophysical situation, a 
cylindrical borehole that is filled with liquid can be con- 
structed by using two grids, the interior filled with liquid and 
the exterior solid. The next extension towards a realistic 
simulation of a VSP survey will be a 3-D implementation of 
the method for solution of wave propagation in the vicinity 
of a cylindrical cavity. With the knowledge with this 2-D 
method, a full 3-D configuration is feasible. 
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FIG. 11. Wave propagation snapshots at times 0.45, 0.6, and 0.75 s. 
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FIG. 12. time section recorded by the series of receivers shown in Figure 8. 
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