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3-D elastic modeling with surface topography by 
a Chebychev spectral method 

E. Tessmer* and D. KosloffS 

ABSTRACT 

The 3-D numerical Chebychev modeling scheme 
accounts for surface topography. The method is based 
on spectral derivative operators. Spatial differencing 
in horizontal directions is performed by the Fourier 
method, whereas vertical derivatives are camed out 
by a Chebychev method that allows for the incorpora- 
tion of boundary conditions into the numerical 
scheme. The method is based on the velocity-stress 
formulation. The implementation of surface topogra- 
phy is done by mapping a rectangular grid onto a 
curved grid. Boundary conditions are applied by 
means of characteristic variables. The study of surface 
effects of seismic wave propagation in the presence of 
surface topography is important, since nonray effects 
such as diffractions and scattering at rough surfaces 
must be considered. Several examples show this. The 
3-D modeling alogrithm can serve as a tool for under- 
standing these phenomena since it computes the full 
wavefield. 

INTRODUCTION 

Surface topography and the weathered zone have great 
influence on seismic reflection surveys. In cases of mild 
topography and low-velocity heterogeneities the effects of 
topography and the weathering zone can be removed by 
static corrections. However, in cases of a rough surface and 
a heterogeneous weathering layer, the seismograms are 
contaminated by diffractions, and the behavior of the ground 
roll becomes more dficult. 

If the wavelengths of the topography and the seismic 
energy are of the same order, nonray wave propagation 
phenomena occur and body waves as well as surface waves 
are scattered at the highs and lows of the surface topogra- 

phy. In such cases, static corrections cannot remove these 
topographic effects. 

As a result of scattering, surface wave amplitudes decay 
more rapidly in the presence of surface topography. These 
effects are present both in global seismology and in reflection 
seismology. 

Various direct methods can be applied to the surface 
topography problem in connection with high material heter- 
ogeneity, e.g., finite differences and finite elements. How- 
ever, these methods are usually of low order. 

Higher order finite-difference methods that are based on 
staggered grids cannot use this approach for the incorpora- 
tion of surface topography, since not all the variables (i.e., 
particle velocities and stresses) are available at the same grid 
node. Therefore some interpolation would be necessary, 
which in turn degrades the accuracy of finite-difference 
operators. 

Generally, it is difficult to incorporate boundary condi- 
tions into spectral methods accurately. An exception is the 
Chebychev spectral method (Kosloff et al., 1990) which is of 
high accuracy. This method can handle the free surface 
boundary condition correctly by using the concept of char- 
acteristic variables. 

The method presented here is based on the Chebychev 
spectral method. It is an extension of the 2-D algorithm given 
in a previous paper (Tessmer et al., 1992). The numerical 
examples demonstrate the relevance of 3-D modeling with 
surface topography. 

EQUATIONS OF MOTION 

The 3-D equations of motion can be written as: 

where in the general elastic case the stresses aij are given by 
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and fi denotes the body forces. The strains eke are defined as 

In the case of isotropic elastic behavior, the stress strain 
relation reduces to 

where X and p are the Lam6 parameters and p denotes the 
density. Parameters A and p are related to the seismic 
velocities u p  and us  by u p  = g ( h  + 2p)Ip and us = d p l p .  

Equation (1) is a system of three coupled PDEs of second 
order in time where the displacements u ,  , u ,  , and u ,  are the 
unknowns. The system of second-order partial-differential 
equations (PDEs) can be rewritten into a system of first- 
order PDEs in time. We then obtain a system of nine 
equations with the particle velocities u,  and the stresses uij 
as the unknowns (Bayliss et al., 1986; Virieux, 1986): 

au, auy a u , )  au, a y  
a u y y - k  -+-+- +&-, 
-- at ( a  ay az  ( 5 )  

auxz au, au, 
- p  + - ,  

at -- ( a -  a x )  

SURFACE TOPOGRAPHY 

The surface topography is introduced by mapping a 3-D 
rectangular grid onto a curved grid. The auxiliary rectangu- 
lar grid has the spatial coordinates 5, u ,  and 5, whereas the 
physical curved grid has the coordinates x, y ,  and z .  A 
similar approach was used by Fornberg (1988) to represent 
curved interfaces in case of 2-D modeling. 

We begin with the mapping functions: 

where zo(S, u )  is a topographic function that describes the 
elevation above some reference level. Parameter zm, is the 
maximum depth of the model assumed to have a plane 
horizontal bottom. 

The mapping chosen in this paper results in a vertical 
linear stretch of the computational grid. However, nonlinear 
stretching functions can also be applied. For simplicity, 
Figure 1 illustrates the mapping for the 2-D case. 

VELOCITY-STRESS FORMULATION ON THE CURVED GRID 

We rewrite the equations of motion (1) as a system of 
first-order equations in time (Bayliss et al., 1986; Virieux, 
1986) and apply the chain rule to account for the stretching of 
the grid in the z-direction according to equation (6): 

FIG. 1. Mapping of a rectangular grid (St-space) (a) onto a 
curved grid (xz-space) (b) with linear vertical stretching. and 
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air, ait, ag air, ait, ag ait, ag 
-+--+-+--+-- 

at a t  ag ax a~ ag ay ag a~ 

For the computation of equation (7), we need the terms 
aglax, dglay, and dg/az given by: 

SPATIAL DISCRETIZATION 

The variables ui, aij, and the material parameters A, p, 
and p are discretized on a spatial grid, where the grid 
spacings in the x- and y-directions are uniform and nonuni- 
form in the vertical direction. 

The solution scheme is the same as in Tessmer et al. (1992) 
for the 2-D case. Differentiation with respect to the horizontal 
directions is carried out by the Fourier method (Gazdag, 1981; 
Kosloff and Baysal, 1982), while the vertical derivatives are 
performed by a Chebychev derivative operator (Kosloff et al., 
1990). For the time integration, a fourth-order Taylor expan- 
sion of the formal solution with time stepping is used. Complete 
details of the numerical algorithm can be found in Tessmer et 
al. (1992). 

FREE-SURFACE BOUNDARY CONDITIONS WITH 
TOPOGRAPHY 

The boundary conditions at the free surface are zero 
normal tractions. In a local coordinate system with the 
2'-axis normal to the surface element, this reads: 

a:, = = a;, = 0. (9) 

Requiring the above boundary conditions implies modifica- 
tions of the remaining variables by characteristic treatment 
(Gottlieb et al., 1982). The modified variables then read 
(Tessmer et al., 1990): 

The superscripts (Old) and (new)  denote the values of the 
variables at the free surface before and after the correction, 
respectively. These corrections have to be applied to stresses 
and particle velocities. Only oh remains unchanged. 

Before the application of the characteristic treatment, the 
particle velocities iti and the stresses uij, which are given in 
the (x, y, 2)-coordinate system, must be transformed into 
the local (x' ,  y', 2')-coordinate system where the 2'-axis is 
normal to the surface element. The transformation into the 
local (x, y , +coordinate system is given by 

i! = a , .&.  
1 Y J '  

and 
u!. = a .  a .  u 

IJ rk ~e ke 7 (11) 
with i ,  j, k,  e = 1, 2, 3, where aij are the components of a 
3 x 3 rotation matrix, and the indices 1,2, and 3 correspond 

Trench 
Line 2 a 

FIG. 2. The trench model: A homogeneous half-space with 
a surface trench. The size of the model is 1250 m x 1250 m 
x 570 m (125 x 125 x 65 gridnotes). The depth of the trench 
is 28.5 m. The source location is 52 m below the surface. 
Two receiver lines are marked. 
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to the x-, y-, and z-coordinates, respectively. Here, k :  and 
ub are, respectively, the particle velocities and the stress 
components in the rotated local (x' , y ', z '  )-coordinate 
system. The elements of the rotation matrix are given by: 

a l l  = cos 6 + a2(1 - cos a ) ,  

a12 = ap(1 - cos a ) ,  

a13 = -p sin 6 ,  

a22 = cos 6 + p2(l - cos a ) ,  

a23 = a sin 6 ,  

a31 = p sin 6 ,  

a32 = -a sin 6 ,  

where 

n . e, 
cos 6 = - 

Inl 

The normal vector on the surface element is given by: 

az0 az0 T 

n =  (z, c, -1) . 

Vectors ex, e,, and e, are unit vectors in the x-, y-, and 
z-directions, respectively. 

After the modifications according to equation (lo), the 
variables must be transformed back into the original 
(x, y, +coordinate system. 

Line 1 
Trench 

Trace t 
10 20 30 40 M 60 70 80 90 100 110 120 

EXAMPLES 

To demonstrate the effects of surface topography, three cases 
of irregular surfaces are investigated. The first examplehas a 
trench at its surface along the y-direction (Figure 2). The width 
and depth of the trench is of the size of the dominant wave- 
length. This is a situation where the wave phenomena that 
occur cannot be treated by ray-tracing methods. In a second 
example, a local depression at the surface is modeled (Figure 
7). Also in this case the wavelength and the irregularity are of 
comparable size. The last example deals with sinusoidal sur- 
face topography in both the x- and y-direction (Figure 9). Here 
the wavelength of the topography is larger than the dominant 
wavelength of the seismic signal. The respective seismic ve- 
locities for the P- and S-waves are 2000 m/s and 1155 mls in all 
examples. A vertical point force is applied ten grid points (52 
m) below the surface. The source function has a cutoff fre- 
quency of 35 Hz with a Ricker-like time history. For simplicity 
all examples are made up of homogeneous half-spaces. 

Trench 

The trench model is shown in Figure 2. The numerical 
model contains 125 x 125 x 65 grid nodes in the x-, y -, and 
z-direction, respectively. The grid spacings are 10 m in the x- 
and y-directions and in the z-direction are in the center of the 
grid. The total volume is 1250 m x 1250 m x 570 m. (The 
vertical spacing varies with depth because of the Chebychev 
derivative operator and is smaller toward the free surface 
and the bottom of the model.) 

The total propagation time is 800 ms with timesteps of 
1 ms. The model has a trench at the surface along the 
y-direction (Figure 2). The depth of the trench is 28.5 m, i.e., 
approximately a of the dominant wavelength. 

Line 2 

Trace I? 2: a? 5p 6p 70 IW 110 120 
I , ,  

FIG. 3. Seismogram sections at the surface of the trench model of the vertical component in the x-direction (a) and in the 
y-direction (b). 
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4 1250m - L x  t Trench 

FIG. 4. Snapshots of the vertical component of the wavefield at the surface (xy-plane) 
of the trench model. (The solid line marks the trench axis.) 
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At two receiver lines, parallel and perpendicular to the 
trench, seismograms were recorded (Figure 3). The seismo- 
gram section (vertical component) in the x-direction (Line 1) 
shows the direct P-wave and a high-amplitude Rayleigh 
wave (R). As a result of scattering at the trench, the 
amplitude of the Rayleigh wave is reduced in the right-hand 
part of the sections. In addition, in front of the ordinary 
Rayleigh wave a secondary Rayleigh wave (PR) induced by 
the scattering of the direct P-wave can be observed. Some 
energy is scattered back to the left-hand side (RR). The 
section in the y-direction (Line 2) shows undisturbed P -  and 
Rayleigh waves. 

Snapshots of the wavefield of horizontal (xy-) plane at 
different propagation times are displayed in Figure 4. The 
xy-snapshots represent the wavefield at the surface. In the 
beginning the wavefield propagates undisturbed along the 
free surface. At 400 ms the direct P-wave hits the trench and 
generates a secondary Rayleigh wave (PR), which travels in 
front of the ordinary Rayleigh wave. This can be seen clearly 
in the later snapshots (500 - 800 ms). In addition, a reflected 
Rayleigh wave (RR) can be observed. The direct P-waves 
and Rayleigh waves (R, RR,  and PR)  are marked in the 
figure. 

Figure 5 shows the vertical component of the wavefield in 
the vertical (xz-) plane. The xz-plane contains receiver line 
1 and the source location. At about 300 ms propagation time, 
the P-wave arrives at the trench and is scattered. At about 
400 ms, the S-wave hits the trench and is diffracted. The 
snapshots between 600 and 800 ms show these diffracted P -  
and S-waves. 

Figure 6 shows the vertical component of the wavefield in 
the vertical ( yz-) plane. The xy -plane contains receiver line 
2 and the source location. The wavefield propagates undis- 
turbed for a long time since in this direction no surface 
inhomogeneities appear. Direct P- ,  S-, and Rayleigh waves 
can be observed. Additionally, at 500 and 600 ms a head- 
wave (H) can be found in the photos. This headwave is a 
shear wave and is guided along the surface by the P-wave. 
At later times (700 and 800 ms), side reflections appear in the 
photo plane. These are caused by the reflected Rayleigh 
wave. This is a real 3-D effect that could not be found in 2-D 
modeling results. 

Depression 

Figure 7 shows the depression model. The depth of the 
depression is 22 m. The numerical model contains 125 x 125 
x 5 1 grid nodes in the x-, y-, and z-directions, respectively. 
The grid spacings are 10 m. The photos in Figure 8 show the 
vertical component of the wavefield in the horizontal (xy-) 
plane. In the beginning, the waves propagate undisturbed. 
At 400 ms propagation time and later, a circular diffracted 
wave originating at the depression can be observed. The 
strong amplitudes appearing at the source region at later 
times are caused by reflections from the model bottom, 
which in this case has rigid boundary conditions. 

Sinusoidal topography 

100 ms 

200 rns 

300 rns 

400 rns 

500 ms 

600 rns 

700 rns 

800 rns 

FIG. 5. Snapshots of the vertical component of the wave- 
field in the vertical (xz-) plane of the trench model, which 
contains receiver line 1 and the source. 

Figure 9 shows the sinusoidal topography model. The 
numerical model contains 125 x 125 x 51 grid nodes in the 
x-, y-, and z-direction, respectively. The grid spacings are 
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100 rns 

200 rns 

300 rns 

400 rns 
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600 rns 

700 rns 

800 rns 

FIG. 6. Snapshots of the vertical component of the wave- 
field in the vertical (yz-) plane of the trench model, which 
contains receiver line 2 and the source. 

10 m in ail directions. The amplitude of the topography is 
422 m. Its wavelength is 250 m. Photos of the vertical 
component of the wavefield are shown in Figure 10. In the 
beginning, almost circular wavefronts are preserved. How- 
ever, with progressive time caused by backscattering at the 
highs and lows of the topography, the wavefield appears 
rather complicated, and it is difficult to attribute events to 
certain wave types. 

Seismogram sections for the three components of particle 
velocity are shown in Figure 11. The strongest event in all 
the sections is the Rayleigh wave. Also in this example, rigid 
boundary conditions at the model bottom are implemented, 
which leads to strong reflections. It is remarkable that the 
y-component (crossline) shows energy at all. (The ampli- 
tudes of the three sections are of the same order of magni- 
tude.) This is a consequence of reflections from the irregular 
free surface. In case of a flat free surface, the y-component 
would not show any energy, because of the radiation pattern 
of the source. 

CONCLUSION 

A spectral method that can handle 3-D surface topography 
with high accuracy has been presented. The surface topog- 
raphy is introduced via mapping rectangular grids to curved 
grids. The accurate application of the free surface boundary 
conditions is done using characteristic variables after rota- 
tion of the solution vector into a local coordinate system, 
which has its z-axis normal on the surface. After application 
of the boundary conditions, the solution vector is rotated 
back into the original coordinate system. 

The method presented permits the investigation of near- 
surface effects stemming from wave propagation phenomena 
caused by a rough surface. The latter include diffractions, 
scattering, multiple reflections, and converted waves. 

The method can be used to generate synthetic data, which 
can be used to study the influence of surface topography on 
seismic processing steps such as static corrections and 
migration techniques. 

FIG. 7. The depression model: Homogeneous half-space 
with a surface depression of 22 m depth. 
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FIG. 8. Snapshots of the vertical component of the wavefield at the surface 
( x y  -plane) of the depression model. 
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FIG. 9. The sinusoidal surface topography model: Homo- 
geneous half-space with sinusoidal surface topography with 
an amplitude of 2 2  m. 

FIG. 10. Snapshots of the vertical component of the wavefield at the surface 
(xy-plane) of the sinusoidal surface topography model. 
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FIG. 1 1 .  Seismogram sections of the three components of the particle velocity at the surface. (a) In-line component (x), 
(b) crossline component ( y) , and (c) vertical component ( 2 ) .  
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