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Table 1. Normal mean square power in the deconvolved output 

S. no. 

Marine data 
I 
2 
3 
4 

Land data 
I 
2 
3 
4 

Kalman 
predictor model 

0.6334 
0.4739 
0.1899 
0.1033 

0.1172 
0.0350 
0.0182 
0.0067 

Levinson 

0.9507 
0.936 
0.7816 
0.7614 

0.9397 
1.0403 
1.0756 
I .0337 

predictor. The Robinson type predictor always results in a 
stable predictor due to the minimum phase criterion. How- 
ever, deconvolution results are much better in the case of the 
Kalman predictor model. The above algorithm can fail to 
give satisfactory results when the data are nonstationary. 
Another limitation is that the innovation model is not suit- 
able for direct estimation of the reflection sequence since all 
the information required is not available. One way of over- 
coming these difficulties to some extent is by making use of 
adaptive estimation techniques. 
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Iterative Depth Migration by Backward 
time Propagation 
N. D. Whitmore, Amoco Production Co. 

s10.1 

This paper discusses a method for doing depth migration 
of common-midpoint stacked sections in a variable velocity 
media. Migration is posed as a time variable boundary value 
problem where a form of the scalar wave equation is solved 
numerically (e.g., by finite difference techniques). The prob- 
lem is solved in time domain with the time-reversed seismic 

section applied as upper surface boundary conditions. This 
is in contrast to many migration schemes which apply the 
surface section as initial values for a depth extrapolation 
technique based on the wave equation. 

While the time-domain solution to the wave equation is 
generally more costly in terms of computer economics, it can 
handle arbitrary dip in a variable velocity field with no 
instabilities in the algorithm. Because of this flexibility, the 
migration procedure can be used for very complex velocity 
models. It velocity boundaries are consistent with geologic 
boundaries, then depth migration can be used to test the 
validity of a model. If some knowledge of the vertical 
sequence of the velocities is available at a few lateral 
locations, then in many cases depth migration can be em- 
ployed to help develop a better model. 

The migration procedure numerically solves a full scalar 
wave equation as a time regression problem, thus there is no 
structural dip limitation. In fact, waves which have encoun- 
tered a turning point can be migrated, provided the reflection 
data are recorded and adequately sampled at the surface. An 
example of this is shown in Figure 1, which is a prototype for 
a Gulf coast salt dome. Because of the increasing interval 
velocity structure with depth, the normal incidence section 
from this structure contains seismic events which were 
generated from beneath the overturned portion of the salt 
dome. This time section was then used as boundary condi- 
tions for the migration procedure, which reconstructed all 
recorded dips, including the overturn. 

The increased sensitivity of depth migration procedures to 
interval velocity brings with it a paradox: If the velocity 
model is known, then migration is not needed, and if the 
velocity model is not known, then an essential input for 
migration is absent. Because of this paradox, migration itself 
is not an inverse method. Depth migration is, however, a 
very useful tool in unraveling complex structure. It offers, at 
the very least, a procedure by which an assumed structural 
model may be tested by comparing the depth migration with 
a depth model. If the comparison is not favorable, then 
modifications in the model must be made. In the case where 
the vertical sequence of velocities is known at a few loca- 
tions (e.g., from well control, velocity analysis, or migration 
before stack), then migration can be used iteratively to help 
develop an improved geologic model. 

Shown in Figure 2 is a schematic of an iterative migration 
procedure. An initial guess of a model is made, incorporating 
all known external velocity information. The seismic section 
is migrated, and a comparison between the migrated section 
and the model is made, and a new model is constructed in an 
attempt to resolve these differences and the procedure is 
repeated. This is in contrast to iterative modeling, where 
synthetic and real time sections are compared. 

An example of the iterative process is shown in Figures 3- 
6. A geologic model and synthetic seismic section are shown 
iq Figure 3. In the field situation, the model would not be 
known and the synthetic section would be replaced by a 
common-midpoint stack of the field section. To demonstrate 
the iterative procedure, we assume that the only knowledge 
of the velocity field in this synthetic example is obtained 
from a well (as indicated on Figure 3). While this model is 
reasonably complex, the vertical trend of the velocity struc- 
ture does not change over the span of the model. From the 

D
ow

nl
oa

de
d 

01
/1

1/
16

 to
 2

3.
30

.6
5.

12
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



(aI GEOI .OGIC MODEL 

383 

: (b) ’ [IME 5 ;ECTION 

(4 DEPTH SECTION 

FIG. 1. (a) Geologic model. (b) time section. (c) Depth section. 

time Section 

, + , , Velocity Model , 

1 DEPTH MIGPATION m* 

Depth Section 

;---r;; 
New Velocity Model 

FIG. 2. Iterative depth migration. FIG. 3. (a) Geologic model. (b) Zero offset time section. 
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FIG. 4. (a) Initial velocity model. (b) Depth migration with 
model o~rlay. 

time SECTION TIME SECTION 

lb) 

FIG. 6. (a) Final velocity model. (b) Final depth migration. 

time SECTION TIME SECTION 

MODEL 1 HODEL 2 MODEL 3 MODEL 4 

HIGRATION 1 MIGRATION 2 MIGRATION 3 MIGRATION 4 

FIG. 5, Iterative depth migration of CMP sections. 
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“well” a horizontally layered model is constructed: the time
section is depth migrated. A higher order guess might have 
been made if well dip information were available. The model 
and resultant migration (plus a model overlay) are shown in 
Figure 4. It is immediately obvious that the model, as 
indicated by the overlay, is not consistent with the depth 
section. Therefore, the model is not correct and must be 
modified. While there may be optimum ways of guessing a 
new model (e.g., there are obvious locations of over migra- 
tion), a reasonable guess will be to assume that the reflectors 
themselves are closer to the correct geologic boundaries 
than the initial model was. The migrated section is therefore 
interpreted and digitized, producing a new model guess. 

The migration procedure is repeated again, obtaining a 
new depth section and thus a new model: the process 
continues until a reasonable match is obtained between the 
migrated section and the model which produced it. A se- 
quence of these iterations for this model is shown in Figure 
5. The first row contains the input time section, the second 
row the model guess for each iteration (produced from the 
depth migration of the previous iteration), and the last row is 
the resultant depth migration with the model overlaid. It is 
worthwhile noting that the quality of the depth migration 
improves as each sequential model gets closer to the correct 
model. After a reasonable number of iterations, a final 
velocity modelis obtained. In this case, the model and depth 
wave field are essentially coincident (Figure 6). This model 
can be compared to the actual model (for this synthetic case) 
and the comparison is quite good. 

While this provides a format for doing iterative migration, 
the process is only as good as the data and reliable interval 
velocity information at each lateral location where the 
geology undergoes significant change in its vertical se- 
quence. A CMP stack is generally only an approximation to 
the primaries only, zero offset section that all migrations 
assume. Furthermore, interpretation of the depth section is 
generally a nontrivial task. These pitfalls must always be 
observed in applying this procedure effectively. 

Reliable structural definition requires a velocity sensitive 
migration procedure and adequate velocity control. If the 
interval velocity trend is known at representative lateral 
locations, interative depth migration can be used to help 
extrapolate this information away from the control locations 
and thus complex structure can be correctly imaged. In areas 
of good data quality, where seismic amplitudes are a relative 
measure of the change in interval velocities, a velocity 
estimation step could also be put in the migration procedure 
to help refine the velocity model. 

Ray Asymptotic Migration (Basic 
Concepts) 

s10.2 

Boris Gelchinsky, Tel-Aviv University, Isruel 

A new method of migration is presented. The method is 
based on local (ray) asymptotic formulas for the field of 
waves observed and calculated and for components of the 
Green’s displacement and stress tensors. The method in- 
cludes the following main steps. 

(1) The fields 

V,(O, A, f) = u,[O, A, t - T&QI cos &JO, A, t - ~ph(A)l 

(u = 1, 2 . . .), 

of separate waves are detected from a given seismogram 
I/(0, A, t) (a source at 0, a receiver at A) by means of the 
automatic procedures of phase and group correlation. a, and 
& are the envelope and the phase of a wave, respectively. 76’ 
and T~,~, are the group and velocity traveltimes. 

(2) The inverse kinematic problem for each ath wave is 
solved. This means that the position of the point of reflection 
M, is found using the traveltime @‘(& and slowness P,(& 
for the middle point A for the array and knowing the 
structure of the overburden. 

(3) If point A is not located in the special area on the front 
of ath wave, then the reflection coefficient K, (M,) at point 
M, can be calculated using the mean value V,(O, A, t) of the 
observed field V,(O, A, t), traveltime TJA), and formulas 
for the leading terms of the ray series for reflected and 
incident waves. 

(4) The more universal method of an asymptotic migration 
is proposed for a general case. This method is based on 
formula of the Kirchhoff (Helmholtz) type for elastic waves, 
on the approximate formula for wave scattered by a body of 
arbitrary shape, and on asymptotic presentations for the 
Green’s tensors. 

A depth section for the reflectivities of the interfaces 
(inclusions) is constructed as a result of asymptotic migra- 
tion. 

Let the &th component (vertical (X, = Z) or one of the 
horizontal (Xi = X, X2 = Y)) Uxi(Xn, X,,,, t) of the displace- 
ment vector U(X,, X,, t) be given with the source and the 
receiver located at the points 0,(X,,,) and A,(X,), corre- 
spondingly. The seismogram Uxi(&, t) (P = 1, 2 . . .,) is 
formed from a given set of traces U,;(O,, A,,,, t) (n = 1, 
2, . . ., N, m = 1,2, . . ., N, m = 1, 2 . . t, M). 

This seismogram can correspond, for example, to one of 
the following systems of observation: 

CJ,,i&, t) = Cixi(Xnp = const, X,p = &, t). CSP method; 

U,,{&, t) = U,ri(X,c = &, X,! = const, t), CRP method; (1) 

and 

method used when the position of the source and the 
receiver in the &h offset varies according to the given rule, 
as for example, in the common-midpoint (CMP). 

The superposition (wavegram) 

ki = I: tiP)(&, t) (2) 

cl 

of X&h components r/“,m’, (&, t) of separate waves is obtained 
as a result of application of the procedure of group and phase 
correlation (Gelchinsky et al, 1983) to each seismogram 
U,i(&> 0. 

Each component V$$ (&, t) of the cuth wave is presented in 
the form 

where &) and &_S’ are the envelope and the phase of the xith 
components, correspondingly, determined with the help of 
the Gilbert transform, Tag (&) and 7J&) are the group and 
the phase traveltimes, correspondingly. The envelope a::’ is 
a finite function 
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