Discussion

On: "Migration by Fourier transform," by R.H. Stolt (January 1978 Geophysics, 43, p. 23-48).

In this paper (page 34) the migrated section is given by
$\phi(X, D, D)=(1 / 2 \pi) \int d p \int d k B(p, k) e^{-i(p X-k D)} \quad \ldots$
where,
$B(p, k)=\left\{1 / \sqrt{\left(1+p^{2} / k^{2}\right)}\right\} . A\left\{p,(k c / 2) \sqrt{1+p^{2} / k^{2}}\right\} \ldots$
However, I find a factor ($c / 2$) is missing in either equation (51) or (52). The necessary derivation follows.

The migrated section is given by equation (50) of this paper,
$\phi(X, D, D)=(1 / 2 \pi) \int d p \int d \omega A(p, \omega) e^{-i\left\{p X-\sqrt{\left(4 \omega \omega^{2} / c^{2}-p^{2}\right)} \cdot D\right\}}$
We have, $k=\sqrt{4 \omega^{2} / c^{2}-p^{2}}$
then, $k^{2}=4 \omega^{2} / c^{2}-p^{2}$
or, $2 k d k=\left(4 / c^{2}\right) \cdot 2 \omega d \omega$
Now, from (ii), $4 \omega^{2}=\left(p^{2}+k^{2}\right) c^{2}$
or, $\omega=(k c / 2) \sqrt{1+p^{2} / k^{2}}$
Therefore, $d \omega=(k c / 2)\left(1 / \sqrt{p^{2}+k^{2}}\right) d k$
or, $d \omega=(c / 2) \cdot d k / \sqrt{1+p^{2} / k^{2}}$
Now by change of variable from ω to k
$\phi(X, D, D)=(1 / 2 \pi) \int d p \int(c / 2) / \sqrt{\left(1+p^{2} / k^{2}\right)} d k$.
$A\left\{p,(k c / 2) \sqrt{1+p^{2} / k^{2}}\right\} e^{-i(p X-k D)}$
If we consider,
$B(p, k)=\left\{1 / \sqrt{\left(1+p^{2} / k^{2}\right)}\right\} . A\left\{p,(k c / 2) \sqrt{1+p^{2} / k^{2}}\right\}$,
equation (vi) becomes
$\phi(X, D, D)=\{(c / 2) / 2 \pi\} \int d p \int d k . B(p, k) e^{-i(p X-k D)}$

Thus, the migrated section $\phi(X, D, D)$ in equation (vii) has an additional factor of $c / 2$.

Introducing $B 1(p, k)=(c / 2) B(p, k)$,
$\phi(X, D, D)=(1 / 2 \pi) \int d p \int d k \cdot B 1(p, k) \cdot e^{-i(p X-k D)}$.

Consequently, although the shifted frequency ω^{\prime} remains unchanged, the factor for change of scale is given by,

$$
\begin{aligned}
B 1(p, k) / A(p, \omega) & =(c / 2) \cdot 1 / \sqrt{1+p^{2} / k^{2}} \\
& =(c / 2) \cdot k / \sqrt{\left(p^{2}+k^{2}\right)} \\
& =(c / 2) \omega^{\prime} / \omega
\end{aligned}
$$

The equation (ix) for the migrated section is equivalent to equation (51) given in this paper, but the change of scale will be ($c / 2$). ω^{\prime} / ω instead of ω^{\prime} / ω as given in this paper.

Somaditya Dutta
Geophysics Division, Rm 207
KDMIPE, ONGC
Dehradun, 248195, U.P., India

Reply by the author to Somaditya Dutta

