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Wave equation migration 
with the phase-shift method 

JENii GAZDAG* 

Accurate methods for the solution of the migration 
of zero-offset seismic records have been developed. 
The numerical operations are defined in the frequency 
domain. The source and recorder positions are low- 
ered by means of a phase shift, or a rotation of the 
phase angle of the Fourier coefficients. For applica- 
tions with laterally invariant velocities, the equations 
governing the migration process are solved very 
accurately by the phase-shift method. The partial 
differential equations considered include the 15 
degree equation, as well as higher order approxima- 

tions to the exact migration process. The most 
accurate migration is accomplished by using the 
asymptotic equation, whose dispersion relation is the 
same as that of the full wave equation for downward 
propagating waves. These equations, however, do 
not account for the reflection and transmission effects, 
multiples, or evanescent waves. For comparable 
accuracy, the present approach to migration is ex- 
pected to be computationally mom efficient than 
finite-difference methods in general. 

INTRODUCTION 

In recent years, migration methods based on the 
numerical solution of the wave equation have gained 
considerable acceptance. These migration techniques 
have their origin in the pioneering work of Claerbout. 
By defining the problem in a downward-moving 
coordinate system, Claerbout (1970, 1976) derived a 
simplified equation which lends itself to numerical 
treatment more conveniently than the full wave 
equation. This partial differential equation. which is 
often referred to as the 15 degree equation, has been 
solved so far by finite-difference methods. 

More recently, Stolt (1978) used Fourier transform 
techniques for migration. Migration with Fourier 
transforms was also studied by Claerbout (1977) 
and Lynn (1977). In these studies, finite Fourier 
transforms are employed for obtaining a direct solu- 
tion of the wave equation. Such direct solutions are 
known to exist for a large class of linear partial 
differential equations with constant coefficients. 
Thus, migration with these methods is limited to 
homogeneous media with constant-velocity function. 
In order to overcome this limitation, Stolt (1978) 
suggests coordinate transformations to cast the wave
equation in velocity invariant form. 

In this paper we develop solution methods for 
migration of seismic records in inhomogeneous 
media. This calls for the numerical solution of partial 
differential equations with variable coefficients. The 
numerical operations are defined in the frequency 
domain rather than in configuration space. The aim 
is to obtain the solution by operating on the Fourier 
coefficients of the seismic section. This permits us 
to formulate numerical procedures which are prac- 
tically free from truncation errors (GaLdag, 1976). We 
find that the numerical algorithm formulated in the 
frequency domain is considerably simpler than any 
finite-difference method in configuration space. The 
reason for this is that the step-by-step process of 
lowering the source and the recorder positions is 
accomplished by implementing a phase change in the 
Fourier coefficients. Numerically, this is equivalent 
to a multiplication by a complex number of unit 
modulus. There is no stability condition associated 
with this operation. This means that the source and 
recorder positions can be lowered by any amount 
within one. computational step. 

In this paper we shall consider only migration of 
zero offset seismic data. In the following section, we 
set out the details of the phase shift method as applied 
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Wave Equation Migration 1343 

to the 15 degree equation. The derivations apply to 
laterally homogeneous media. In the subsequent 
section, we extend this method to higher order 
equations. We obtain an asymptotic equation 
whose form is the same as the relativistic Schroe: 
dinger equation expressed in a downward-moving 
coordinate system. Next we attempt to generalize the 
phase shift method to laterally inhomogeneous media 
and discuss certain simplifications in the migration 
algorithm. The computations of the wave extrapola- 
tion and those of the inverse Fourier transformation 
with respect to the depth variable are combined into a 
single computational step. Finally, numerical results 
of migration examples are discussed. 

THE PHASE SHIFT METHOD; 
SECOND-ORDER EQUATION 

The zero offset seismic section p(x, t, T) may be 
considered as a wave field measured at some specified 
depth from the surface of the earth. The variables 
x, t, and r are the horizontal position, the two-way 
traveltime, and the two-way vertical traveltime, 
respectively. Computationally, the migration process 
can be regarded as a numerical approximation of the 
changes in the wave field as the sources and the 
recorders are moved downward into the earth. The 
seismic section p(x, t, 7 = 0) recorded at the surface 
serves as the initial condition for the solution 
p(x, t, T), the seismic section which would have been 
observed, had the sources and the recorders been 
positioned at depth T. The subset p(x. t = 7, T) of all 
the computed seismic sections corresponds to the 
diffractor source distribution and provides the desired 
migrated section. This concept is illustrated by Claer- 
bout (1976) in Figure (I l-2-6), where the results 
are located along the diagonal of the (z, t) grid or, 
according to the present notation, the (T, t) grid, as 
suggested by Loewenthal et al (1976). 

We shall demonstrate the phase-shift method with 
the equation 

This is a second-order approximation to the two- 
dimensional scalar wave equation written in a 
downward-moving coordinate system (Claerbout, 
1970, 1976). It is also known as the 15 degree 
equation. 

In order to keep the details of the derivation simple 
and tractable, we shall assume no lateral velocity 
variations, i.e., v = v(r). Let the finite Fourier trans- 
form of p be defined as 

- exp[-i(k,x + wt)], (2) 

in which 

K= r/Ax and a= r/Aht, (3) 

where AX and At are the grid spacings. The summa- 
tion in (2) is carried out for all frequencies lksl 5 K 
and Iw/ 5 a. 

In view of definition (2), the partial differential 
equation (1) expressed in the frequency domain 
becomes 

P, = 
-i v2k2 
SP. 

80 (4) 

The solution to (4) can be written in the following 
form 

P(T + AT) = P(r) expt-i C#J AT), (5) 

in which 

(6) 

If we define vTmS as the root-mean-square value of 
the velocity averaged between the interval r and 
r+ AT, i.e., 

(7) 

and let 

m = 2oJ/vr,, (8) 

for this interval of integration, then we can write 6 
in the simple form 

Since solution (5) depends on the rms value of the 
velocity within any interval of integration, the 
velocity v in (4) can be replaced by its rms value 
V mlS~ With the help of (8), we can write (4) in a 
somewhat more convenient form, 

-iwk2 
P,= 2 

2m2 ” (10) 

The desired migrated section is given by the subset 
p(x, t = T, T) of ah the computed seismic sections. 
Therefore, after each AT step, w*e compute 

P(x, t = 7, T) = xxP(k,, w, 7) . 

. exp[i(k,x + WT)]. (11) D
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1344 Gazdag 

It is emphasized that the phase shift $A7 required for 
the extrapolation of a given wave_ c_omponem from 
r to r + AT depends on the rms velocity across this 
layer of AT thickness. 

Let NX and NT be the number of grid points along 
the x- and t-axes, respectively, over which p(x, f, 7) 
is defined. Then P(k,, W, T) has NT. NX/2 com- 
plex data points. Approximately one-half of these 
Fourier coefficients can be set to zero, since those 
waves with 

m2 i k; (12) 

correspond to nonpropagating waves. One-half of the 
Fourier coefficients are nonphysical if Ax = 
vrmsA~/2, Normally, Ax is greater than that, so the 
number of the deleted Fourier coefficients represent 
a smaller fraction than one-half of the total. However, 
if the maximum dip in the data is less than 90 degrees, 
ihe number of coefficients -which need rnot be con- 
sidered increases. Therefore, the assumption that 
only one-half of all the Fourier coefficients need to 
be included in the computation is a reasonable one. 
Thus, the computations in (5) require NX. NT/4 
complex multiplications. The computations in (11) 
for one t value require approximately NX . NT/2 
additions as well as NX . NT/ 2 multiplications. If 
AT f At, for example, AT = rAt, then at each T 
level (11) must be computed for r different t values. 
The total operation count for advancing one AT step 
[equation (5)] and reconverting the data into the 
(x, t) domain [equation (I])] requires 

(r + 2)NX. NT/ 2 multiplications (13) 

and 

(r + 1) NX . NT/ 2 additions. (14) 

These figures do not include the computation of the 
complex multipliers and trigonometric functions, etc. 

The remarkable advantage of solving (1) in the 
frequency domain is that the numerical integration 
of the Fourier transform (10) is reduced to a multipli- 
cation of P by a complex number of unit modulus. 
This requires less computing than in finite-difference 
methods. This is seen immediately when we consider 
the AT = At case, i.e., when r = 1 in (13) and (14). 
This means that one AT step requires approximately 
1.5 multiplications and only 1 addition per data point. 
On the other hand, a simple (explicit) finite- 
difference scheme for (1) would have to involve no 
less than six neighboring grid points. Such a finite- 
difference expression would require about 2 multipli- 
cations and 5 additions per grid point. If AT is much 

greater than At, i.e., r S= 1, the operation count takes 
a~ turn_ in_ CWOE of the finite-difference method. In 
this case, however, the accuracy of migration with 
the finite-difference scheme cannot be expected to 
compare favorably with the accuracy of the phase- 
shift method. Moreover, the phase-shift method is 
equally suitable for solving higher-order equations 
to be discussed in the following sections, which 
could not be accomplished satisfactorily with finite- 
difference methods defined in terms of the variables 
x and t. Another important property of the phase-shift 
method is accuracy. The numerical procedure is free 
of truncation errors. Moreover, there is no stability 
condition imposed on the magnitude of AT. 

Another type of error which deserves attention is 
related to truncation in the frequency-wavenumber 
domain. It is known that the highest frequency and 
wavenumber which can be represented on a grid of 
spacings Am: and Ax are given by ir/ Air and n-/Ax, 
respectively. This upper limit is commonly referred 
to as the Nyquist frequency or the “folding” fre- 
quency. When a continuous signal, say exp(i w’t) 
with o’ > n/At, is sampled at a rate At, then the 
digitized data cannot be distinguished from the 
digitized version of one of it5 aliases, e.g., 
exp[i(w’ - 27r/ At) t]. We are concerned here about 
aliasing or folding errors resulting only from the 
numerical solution method of (1). Therefore, we shall 
assume that the grid spacings At and Ax are sufti- 
ciently small for representing the unmigrated section 
in all important detail. In other words, the section is 
specified completely by a finite number of Fourier 
coefficients associated with the computational grid. 
The question to be answered is this: Are there any 
Fourier modes produced by the migration process 
whose frequencies exceed the folding frequencies 
n/At and n/Ax? From (1 I), we obtain migrated 
results for some depth r from a set of Fourier coeffi- 
cients, which were subjected to phase changes whose 
magnitude is proportional to the same variable r. 
This results in a frequency change in the migrated 
section corresponding to the dispersion relation of 
(1) (Claerbout, 1976), 

k, = ~(1 - v2k:/8d), (15) 

where k, is the frequency (wavenumber) associated 
with the r variable. From (15) and (12) we see that 
k, 5 w. This implies that the migrated results contain 
no higher frequencies than the unmigrated section. 
Thus, if both sections (before and after migration) 
are represented on the same grid, then there are no 
apparent aliasing or “folding” errors associated with 
the migration process. D
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Wave Equation Migration 1345 

FOURTH-ORDER AND ASYMPTOTIC EQUATIONS 

Equation (I), whose solution we have considered 

so far, is characterized by the dispersion relation cx- 

pressed in (15). This is a second-order approximation 

to the dispersion relation of the full wave equation, 

which is given by 

4 = w [I _ (1 -$!$)‘:‘I, (23) 

providing that v is constant uithin the interval 

(7. T + AT) under consideration. If this is not the 

case, 4 must be determined from the expression 

k,= @(, -!x)‘;‘. (16) 4=gj-Tr+“r[ I -(I -%)I’+ (24) 

The fourth-order approximation to (16) is 
When (24) is used to compute the rate of phase 

change 4, then (5) yields the numerical solution of 

k, = w 

(17) (25) 

The partial differential equation with this dispersion 

relation is 

V2 
Pm7 = - --Pttss - 

8 
& P.rrrs. (18) 

This equation corresponds to equation (10-3-17) of 

Claerbout (1976). We note that t represents the two- 

way traveltime. and that 7 is the two-way vertical 

traveltime. The Fourier transform of (18) can be 

written as 

p, (19) 

which corresponds to equation (10-3-17) of Claer- 

bout (1976). The numerical solution of (19) is as 

described for the second-order case, except for the 

amount of phase shift. If the velocity v can be re- 

garded as some constant over the interval (T, 7 + AT), 

then 4 is calculated for this layer from 

q+_[l%+-!f$L]. (20) 

However, if there are significant velocity variations 

within the interval under consideration, then the 

correct expression for $I is 

I 
&-. (21) 

The solution to (19) is expressed by (5) with 4 given 

by (20) or (21). 

If additional higher-order terms are used in com- 

puting $, the solution (5) becomes a higher-order 

approximation to that of the full wave equation. With 
the help of the Taylor series approximation to the 

square root, which is 

(1 - z2)l/2 = 1 _; -; - $ - . . . , (22) 
we can write the exact expression for 4 in the follow- 

ing form 

w(hich is expresbcd in a downward-moving coordinate 

system. Equation (251, exprehscd in a stationary 

coordinate systetn, is 

P,= iw [I -!$]“‘P, (26) 

which is known as the relativistic Schroedingcr 

equation (Claerbout, 1976, p. 203). 
The solution to the asymptotic ccluation (25) is ob- 

tained from (5) when the correct phase (24) is used. 

These results are characterized bl a dispersion rela- 

tion which ix very close to that of the full wave 

equation. Naturally, the exact representation of a 

section is limited in that only a linite number of 

wa\‘cs can be represented over any computational 

grid. This limitation is true for any computational 

method. An advantage of the present approach to 

migration (over finite-difference methods) is that all 

the wave components which are represented on the 

grid are extrapolated correctly. without truncation 

errors. 

The frequency domain representation of a seismic 

section implies periodic boundary conditions for the 

partial differential equations under consideration. 

Consequently. there is a possibility for some ob.jccts 

to migrate across the boundaries 01‘ the computational 

domain. Such phenomena produce incorrect results in 

the neighborhood of these boundaries. It is important 

to note, however, that migrated results near the 

boundaries arc always unreliable. and most often 

incorrect, with no regard to the boundary conditions 

and the numerical method being used. This can he 

seen by considering that accurate migration re\utts 

near the boundary would requil-c information from 

both sides of that boundary, which is not available. 

The effects of periodicity on the nligrated section can 

be eliminated in practice by chotlaing the computa- 

tional domain somewhat larger than the actual $eiamic 

section and padding the extra S~XSL‘ with Lcros. D
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1346 Gazdag 

LATERALLY INHOMOGENEOUS MEDIA The first-order approximation of this integral can be 

We have considered so far laterally homogeneous written as 

media only. In such cases the velocity is independent p(x, w, T+ AT) =‘p(x, co, 7) 

of the horizontal variable x. The numerical ap- 
proaches described in this paper are particualrly suit- + i v2(x, 7) 

80 
Psr(& w, T)AT. (29) 

able for this class of migration problems for two rea- 
sons. First, (25) and (26) represent a significantly 
better description of the migration process than Our goal is to remove the x-dependence from the 

lower-order equations do. The second reason is that velocity variable and to account for- it in the variable 

the phase-shift method gives very accurate results representing the limit of the integralion. We do this 

within the limitations related to representing the with the help of the lateral rms velocity V, which is 

seismic section as a finite set of double Fourier series, defined as 

whose effects we have discussed above. When the 
medium is laterally inhomogeneous. we lose both ot 
these important advantages. Therefore, a great deal 

i+!(T) =; 
i 

X 

V’(X, T)dX, (30) 
0 

of caution is required when dealing with lateral in which X is the horizontal length of the seismic 
velocity variations. Notwithstanding these limita- section under consideration. Since we wish to use T 
tions, we can still expect to obtain practical results as the migration velocity, rather than V, we define a 
through simple modification of the phase-shift method new variable 
based on judicious application of some physical 
principles. 

Perhaps one of the most important examples of 
5 = 1; (V’/i?‘)dT. (31) 

strong horizontal velocity variation is encountered at which will also set the upper limit of the definite 
the ocean bottom w*hich is inclined at some angle integral in conjunction ,with V. Substituting the 
from the horizontal. In order to traverse such an inter- derivative of (31). d.$/dr = v2/V’. into (29) we 
face, the source and recorder positions (T) must be obtain 
advanced downward at different rates depending on 
their horizontal positions. In order to incorporate this p(x, w, T+ AT) ~p(x, w, T) 

x-dependence into the solution, P(k,. o, T) must be 
Fourier transformed with respect to /c~ in each AT + ~pss(x, w, T)&$. (32) 

step. Naturally, this requires additional computation. 
Alternatively, a different method (say finite- 
difference) could be used for traversing such critical 

In (32) the v2/V2 ratio is absorbed in the increment 

regions. Even though the treatment of the ocean 
At = (d</dT) L$T, or equivalently. A[ = (v’/?) AT. 

bottom requires special consideration, tlux extra cost 
When (32) is written in the form of a definite integral, 

is most likely offset by the very effective processing 
i.e.. as 

of data in reaching the bottom. It requires only one p(x, w, T + AT) zp(x, w, T) 

AT step for lowering the source and recorder positions 

s 

(33) 

down to any depth in the water itself. + 
7+I\C i v2 

X, w, T)d7, 
One way to account for weak horizontal velocity 7 

,Pss( 

variations is by undermigrating or overmigrating 
selectively, using some average velocity. Let us 

the increment A[ appears in the upper limit of the 

Fourier transform both sides of (1) with respect to the 
integral rather than AT as in the cast of (28). If we 

variable t only. which gives 
take the lower limit of the integral as zero, i.e., 
T = 0, and the depth of interest expressed by the 

(27) 
two-way traveltime as 7’. i.e., 7’ = T + AT in (33), 
we obtain the expression 

whose solution can be expressed as Pk W, 7’) =P(X, W, 0) 

P(X, w, 7+ AT) =pk w, 7) + 
5’ivZ 

+ I 
I 

o gwPsr(% a, T)dT> 

i+AT i 3(x, 7) 

T 8w P.&, w, 7)d~. (28) in which the correspondence between 5’ and 7’ is 
expressed in (31). The physical significance of (34) 

(34) 
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Wave Equation Migration 

LENGTH IN METERS 

b. 

FIG. 1. (a) Synthetic zero-offset record section of three 
reflectors directed at 30, 45, and 60 degrees. (b) 
Migration of (a) using the asymptotic equation. 

LENGTH IN METERS 

_. 
E 0 1600 3200 
z 0 
- 
g 400 

F 800 

1200 

1600 

2000 

2400 

2800 

b. 

FIG. 2. Magnified views of the section shown in 
Figure la after migration using (a) the second-order 
equation, and (b) the asymptotic equation. 

is that when v2 is replaced by its lateral mean value in which 

V2, the migrated data at depth T’ is given by 
p(x, t = T’, T= E’) rather than by p(x. t = T’, 
7 = T’) as before. The difference between 5’ and where 
T’ represents the amOUnt of overmigration (5’ > r’) 
or undermigration (5’ < T’) required in order to 
account for the difference between v2 and its lateral 
mean VZ. By letting 

PROGRAMMING CONSIDERATIONS FOR AN 

EFFICIENT ALGORITHM 
we obtain 

As discussed above, the present approach to 
migration consists of (1) the extrapolation of the 
wave downward by operating on the Fourier coeffi- 

k2 v2 
+= 

I mlb 
-. 

8w 

v2dT. 

m = 2w/vrms, (38) 

(36) 

(37) 

cients, followed by (2) the inverse Fourier trans- 
formation of the correctly migrated data. These two 

Notice that (39) is the same expression as (9). The 

operations expressed by (5) and (I I) can be combined 
difference is in the definition of the rms velocity, 

into a single operation. The solution to (4) can be 
(7) and (37). By substituting (35) into (1 I), we obtain 

expressed with reference to P at T = 0, i.e.. p(x, t = 7, 7) = ~~P(k,,. w, 0). 

P(T) = P(0) exp(-i@), (35) * exp{i[k,x + (w - $)T]}. (40) D
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1348 Gazdag 

LENGTH IN METERS LENGTH IN METERS 

0 1600 3200 

b. 

r 
0. 

0 1600 3200 
z 0 
- 
w 400 
I F 800 

I200 

1600 

2000 

2400 

2800 

b. 

FIG. 3. (a) Unmigrated zero offset section of two 
reflectors inclined at 60 and 75 degrees. (b) Migration 

FIG. 4. Migration of the synthetic record section 

of (a) using the second-order equation, 
shown in Figure 3a using (a) the fourth-order equa- 
tion, and (b) the asymptotic equation. 

By making use of (39), we can write (40) as 

.exp (i lxx+ (1 -&)wr]}. (41) 

Equations (40) and (41) give results which are solu- 
tions to the second-order approximations given by 
(I). Higher-order solutions are obtained if instead of 
(39), $ is computed from a higher-order approxima- 
tion. In the case of the asymptotic equation, Ic, is 
given by 

JI=;“/~‘[ 1 -( 1 -%)112]d~, (42) 

whose substitution into (40) gives 

* exp{i[k, x + w. 

. 1’ (I - vzk;/4c2)1’2dr]}. 
0 

(43) 

For each r value, (41) or (43) represent approxi- 
mately NX . NT/ 2 additions and NX NT/ 2 multi- 
plications, in addition to the operations required to 
compute the exponent itself. The computational com- 
plexity of (43) is roughly that of (I 1). However, in 
this direct approach the extra complex multiply (5) 
has been eliminated. Therefore. this direct method 
requires less than one-half of the operations necessary 
for the two-step procedure outlined previously. 

In the special case when v is constant. (43) be- 
comes, 

p(x> t = T, T) = ~~P(k,, co. 0) . 

. exp[i(k,x + k,T)], 

where k, is the frequency variable with respect to the 
variable 7, given by 

k, = w [I -!%]“‘, (45) 

Equation (44) is essentially the same as equation (50) 
of Stolt (1978). We note again that k, I w, which D
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Wave Equation Migration 1349 

means that the problem can be solved, in principle 
at least, without errors due to aliasing. 

RESULTS 

We tested the phase-shift method on synthetic 
zero-offset record sections. The record sections were 
generated by implementing the theory of Trorey 
(1970) for seismic diffractions. All numerical results 
were obtained by computing on a 128 X 128 grid, 
using A.u = 50 m, At = AT = 50 msec. The migra- 
tion velocity was constant, v = 2000 m/set. When 
working with this velocity value, the two-way vertical 
traveltime r measured in msec is numerically equiva- 
lent to the depth expressed in meters. 

The migration examples represent results obtained 
from three different equations, which are solved 
numerically by the phase-shift method. The second- 
order approximation corresponds to the well-known 
15 degree equation (1). Migration by means of (18) 
or (19) is called the fourth-order approximation. As 
the number of higher order terms (22) is increased 
without limit, the resulting approximation ap- 
proaches equation (25) asymptotically. Therefore, 
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FIG. 5. Magnified views of the migrated sections 
shown in Figure 4. 

migration by (25) is referred to as the asymptotic 
approximation. The asymptotic equation has a dis- 
persion relation which is identical to the full wave 
equation for downward-traveling waves in constant- 
velocity media. Therefore, it is clearly superior to 
lower-order approximations. This is demonstrated 
by our results beyond any doubt. particularly for 
steeper dips. 

For the correct interpretation of the figures, it is 
important to emphasize that the record sections were 
not subjected to any kind of smoothing before 
migration, A synthetic trace is a sequence of pulses 
of very short duration. The time at which these pulses 
occur is usually between two grid points AC apart. 
The pulse is represented on the grid by sharing its 
value between the two nearest grid points. Thus, the 
synthetic record contains a great deal of high- 
frequency components limited only by the Nyquist 
frequency. We found that we did not need to work 
with some kind of wavelets, whose high-frequency 
content is considerably less than that of a pulse of 
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FIG. 6. (a) Synthetic zero-offset record section of a 
dipping reflector. (b) Migration of (a) using the 
asymptotic equation. D
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FIG. 7. Magnified views of the section shown in 
Figure 6 after migration using (a) the second-order 
equation. and (b) the asymptotic equation. 

approximately At width. This is the consequence of 
migrating all w’aves accurately. 

Figure 1 shows the synthetic zero-offset record 
section of three plane reflectors and the migrated 
section using equation (25). The migrated section 
using the second-order approximation is shown in 
Figure 2a. It is remarkable that the “15 degree 
equation” results in a rather good migration of the 
reflector directed at 30 degrees. This leads us to 
believe that this equation might have been called 
the “30 degree equation” if accurate numerical 
methods had been used initially for solving it. While 
the quality of migration with the 15 degree equation 
deteriorates for reflectors with higher dips, all re- 
flectors are migrated properly by the asymptotic 
expression (25) as shown in Figure 2b (magnified 
view of Figure lb). 

WC have also experimented with reflectors up to 
75 degrees. The record section and the migrated 
sections processed by the three different equations 
are shown in Figures 3, 4, and 5. The reflectors had 
to be short in order to keep the record section within 

the computational domain whose extent is 6400 X 
6400 in units of m and msec. None of the lower- 
order approximations can migrate the 75 degree 
reflector with acceptable accuracy. With the 
asymptotic equation, however, we obtain good 
migration as shown in Figures 4b and 5b. This is 
quite remarkable if we consider that the 75 degree 
reflector spans only six traces. 

We notice that the migrated records appear to 
spread out over several At lengths. This could suggest 
some shortcoming of the numerical methods. This is 
pot the case, however. The reason for the widening 
of the migrated records with increasing angle is re- 
lated to the resolution of the unmigrated data. The 
synthetic record section defined on a grid can only 
represent data whose spread (thickness) is at least the 
grid size Ar (or AX). In practice, this thickness is usu- 
ally wider than Aht due to the sharing of the pulse 
between two neighboring grid points. When these 
data are migrated, even with the best possible method, 
it will retain this “thickness.” Thus. what we can 
expect to obtain from the migration is a reflector 
whose thickness is roughly 2At. The cross-section 
of such reflector along the 7 axis is ( I /cos u) times 
wider. For 01 = 60 and 75 degrees, this corresponds 
to 4At and 7.7At, respectively. This ia approximately 
what we observe in Figure 5b. This broadening in 
T can also be viewed as the corollary to the dispersion 
relation (16). Since k; 5 p, the frequency spectrum 
of the migrated section is narrower (in k,) than that 
of the unmigrated section (in the variable w). The 
narrower frequency bandwidih implies broadening 
in T, which is in complete agreement with our 
observation. Figures 6 and 7 show migration results 
of a dipping reflector consisting of 18 plane segments. 
The reflector is a piecewise linear approximation to 
a sinusoid with maximum dip of 52 degrees. For this 
synthetic section, Figure 7 provides a comparison of 
the migration accuracy of the 15 degree equation and 
that of the asymptotic expression. 

CONCLUSIONS 

We have described numerical methods for wave 
equation migration based on Fourier transform tech- 
niques. The algorithm is defined in the frequency 
domain, rather than in configuration space. The 
computations are simple, since the lowering of the 
source and recorder positions is implemented by 
incrementing the arguments of the complex Fourier 
coefficients. This amounts to a complex multiplica- 
tion which is more economical than linite-difference 
methods. For laterally invariant migration velocities, 
the partial differential equations can be solved with D
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high accuracy. The equations under consideration 
do not account for the reflection coefficients or 
evanescent waves. The most important result of this 
paper is that the phase-shift method can be used to 
solve the relativistic Schroedinger equation numeri- 
cally, whose dispersion relation is identical to that 
of the wave equation for downward-traveling waves 
in constant velocity media. The phase shift method 
was tested on synthetic zero offset records, including 
reflectors with 75 degree dip, with excellent results. 
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