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JON I;. CLAERBOUT* AND STEPHEN hiI. DOHERTY* 

Earlier work developed a method of migration 
of seismic data based on numerical solutions of 
partial differential equations. The method was 
designed for the geometry of a single source with 
a line of surface receivers. Here the method is 
extended to the geometry of stacked sections, or 
what is nearly the same thing, to the geometry 
where a source and receiver move together along 
the surface as in marine profiling. The basic idea 

THE SIMPLEST CASE 

For the sake of clarity we begin with the 
simplest case for which migration is a useful con- 
cept. Then realistic complications can be included 
in order of their practical importance. First, con- 
sider a two-dimensional model of the earth, y 
horizontal, z downward, in which the seismic 
velocity c is constant but the reflectors have 
arbitrary dips and curvatures. Here we neglect 
shear waves, although they can be treated by the 
method of Landers and Claerbout (1972). We also 
neglect multiples and energy spreading into the 
third dimension. Multiples will be treated in a 
later paper. Let there be sources and receivers 
uniformly spaced over the y axis at intervals of 
Ay. We can suppose that all of our shots are set 
off in unison. (Even if they are not WC may synthc- 
size it in a computer by adding seismograms to- 

simply stated is that the best receiver line for any 
reflector is just at (or above) the reflector. Data 
received at a surface line of receivers may be 
extrapolated by computer to data at a hypotheti- 
cal receiver line at any depth. By considering 
migration before stacking over offset, it is found 
that certain ambiguities in velocity analysis may 
be avoided. 

gether.) .4t some depth which is very great com- 
pared to Ay the semicircular wavefronts will 
combine together in the fashion of Huygens 
secondary sources to make a downgoing wave 
which is essentially a plane wave. In other words, 
at sufficient depth, point sources along the surface 
are indistinguishable from a surface line source. 
It turns out that in practice there are usually not 
enough shots and deep enough reflectors for the 
plane-wave approximation to be very good. 
Nevertheless, this is a useful starting point and we 
will return later to consider the fact that the 
downgoing wave is not a plane wave. 

Considering the downgoing wave to be merely 
an impulsive plane wave simplifies the task of 
migration because we then may turn our atten- 
tion entirely to the upgoing wave; since, accord- 
ing to the basic principle (Claerbout, 1971b) 
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742 Claerbout and Doherty 

“reflectors exist at points in the earth where the 
first arrival of the downgoing wave is time coinci- 
dent with an upgoing wave.” 

A useful departure from our earlier work is 
that we are now migrating data from many shot- 
points at a time whereas previously each shot- 
point was migrated separately before summation. 
The major effort in migration is to take the ob- 
served upgoing wave at the surface and project it 
back downward. -4 frequency-domain technique 
for this downward projection is given in Claerbout 
(1970 and 1971b). Here we will give a time-do- 
main method because it leads to our central topic 
of downward continuation of movcout-corrected 
seismograms. 

We are basically interested in projecting upgo- 
ing waves back into the earth. As pointed out in 
earlier papers, great economy and stability can be 
achieved by specializing the wave equation, 
which is second order and has both upgoing and 
downgoing solutions, to a first-order equation 
with only upgoing solutions. The first step is to 

chain rule for partial differentiation. Obviously, 
C:, = P$ and 

I:,, = p;,,,. (3 

Also 

The nontrivial differentiation is 

P, = E$Y: + I&: + I+: = CP:! + r:,, 

which on a second differentiation leads to 

F’,, = c(&,, + IX.;,) + (c&,1 + FL) 

= c2P:‘z8 + 2rt$;, + I$,,. 
(7) 

Sow we insert (5), (h), anti (7) into the scalar 
re-express the scalar wave equation in a coordi- wave equation (2) and obtain 
nate frame which translates upward with the equation in a translating frame, 
speed c. In such a moving coordinate frame, the 
upcoming waves will be Doppler shifted to lower 2 

frequencies and the downgoing waves will be 0 = I$,, - ~- I$L’ - 

Doppler shifted to higher frequencies. Then a 
G 

the scalar wave 

low-pass filtering type of operation can separate 
up from downgoing waves. 

We have the scalar wave equation 

0 = E f a:: _ A d:!: 
dy2 a.?? c2 &” 1 

(rj 

which we abbreviate as 

0 = P YY + J-’ _ - C?l’,[. LZ (2) 

We have the transformation to a coordinate 
frame translating upward with velocity c 

Y’ = Y, (3a) 

z’ = z + ct, and (3b) 

1’ = t, (SC) 

and we have the statement that the new coordi- 
nate frame contains the same wave disturbance 
as the old frame. 

The rightmost term P’,J,* is proportional to the 
square of the Doppler-shifted frequency of a 
wave. Thus, dropping this term may be expected 
to have little effect on upgoing waves but a 
drastic effect on tiocvngoing waves. in fact, drop- 
ping the last term of (8) has the desired effect of 
eliminating the downgoing waves altogether as 
can be seen by comparing these results to earlier 
work (Claerbout 19i0, 197 1 a, 1)). Simply dropping 
the term does have the untlGretl effect of limiting 
velocity accuracy to about a percent at 15 de- 
grees. Economical procellures for obtaining better 

P(y, 2, f) = P’(y’, z’, 1’). (4) 

To express the wave equation (2) in terms of the 
translating coordinate system, we may use the 

than a percent accuracy at -15 degrees also may be 
found in the earlier work. 

Dropping the last term from (X), we have 

A computer algorithm for solving (9) is described 
in Claerbout and Johnson (1072) along with a 
more detailed discussion including accuracy, sta- 
bility, and an air-wave example

Knowing the form of the upcoming wave at the D
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Downward Continuation of Seismograms 743 

surface of the earth, we can use equation (9) to 
project the upgoing wave backwards in time and, 
thus, find the upgoing wave at greater and greater 
depths. Using the basic principle “reflectors exist 
at points in the earth where the first arrival of the 
do\vngoing \Vave is time coincident aith an up 
going wave,” and considering the clc)\vngoing ~vave 
to be a delta function at time t = B c:, we get ior the 
earth structure .S(_V, 2) 

S(y, z) = c P(y, z, 1)6(f - c,,c)tl/, (10) 
J 

where P(y, z, t) is found by solving (9) ior P’(y’, 
z’, 1’) and then transforming P(_v’, z’, t’) to P(y, z, 
t) with the inverse to equation (3). 

MOVEOUT-CORRECTED SEISMOGRAMS 

In the previous section Ive consitlerecl the data 
which would be recorded if all surface shots were 
set off at the same time If the shots are not set 
off at the same time but data is recorded from 
each shot separately, simultaneous shooting can 
by synthesized in a computer by stacking the 
data. For each receiver all seismograms of the 
different shots are aligned by shot time anti added 
together. In practice, moveout correction would 
be applied before stacking. This correction is in- 
tended to remove source-receiver geometrical 
effects. Since it was ignored in the previous sec- 
tion, the results were limited to very great depths 
where the correction is small. 

Figure 1 defines a moveout-corrected profile of 
seismic data. G-eat improvement in the partial 
differential-equation migration method results 
from the idea that. an KM0 profile and often a 
zero-offset section can lx governed by a differen- 
tial equation. Figure 1 illustrates how an NM0 
profile M may be constructed from an upcoming 
\vavc I: by transcribing data values from the 
(y, t) plane to the (x, tl) plane. This operation is 
actually a coordinate transiormation of the data. 
Since the movcout-corrected profile is just the up- 
coming wave with coordinate axes deformed, it is 
not surprising that moveout-corrected profiles can 
be governed by an equation derived through a 
coordinate stretching transformation of the wave 
equation. The idea that there should be any 
advantage to using diffcrenlial equations on syn- 
thetic things like movcout-corrected profiles (as 
compared to natural things like waves) arose out 
of the following observations: It is comparatively 
ineflicient to let a wave packet propagate across a 
grid in a computer. It is much more efficient to 
describe a wave in a coordinate frame which 
moves along with the wa\‘c, as was done for the 
surface line source case in the beginning of this 
paper. In such a frame, things happen slowly and 
larger time increments may be used. There is a 
similar situation in a nearly layered medium 
where seismic arrivals (upcoming waves) fit 
nearly hyperbolic travclt imc curves, and the ob- 
ject of a migration program is to deform the 
hyperboloids into lines \vhich represent the layer- 

t 

PROFILE NM0 PROFILE 

S I? 
R R R 

a 
. . 

i I/l d 

. 
X 

i 

ZERO OFFSET SECTION 

5s s S 

RRRR 

FIG. 1. Definition of profile and section. The left frame is indicative of observedul)coming waves recorded with 
one shot and a surface receiver line. This is called .a profile. Data points are moved from this profile (y, I plane) to 
the central frame (x, d plane) under control of transformation equations like (13), with z’= 0. The central frame will 
be called an NM0 profile. The third frame depicts upcoming waves recorded with a different shot-receiver geometry. 
Each recording is made with the shot and receiver at the same location. This will be called a (zero-offset) section. 

Although the methods of this paper assume the geometry of the NM0 pro_/&, they will often be applicable to data 
recorded as s&ions. D
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744 eiaerbout and Doherty 

ing. A migration partial differential equation 
does a lot of work just moving energy around on a 
grid from one more or less predictable place to 
another. Considerable effort can be saved by do- 
ing moveout correction (including application of a 
time-variable velocity if necessary) to get energy 
in approximately the right place before requiring 
a differential equation to migrate the data to its 
final proper position. If reflecting layers are per- 
fectly flat and level, migration makes no change 
to the moveout-corrected data. The greater the 
structural dips and curvatures, the greater will bc 
the task for the migrating differential equation. 
Grid spacing can be chosen according to the maxi- 
mum anticipated dip. 

Although efficiency was the motivation in the 
search for a differential equation to control mi- 
gration from moveout-corrected data, there are 
two concomitant benefits which are far more 
important than efficiency. First, the data from 
spatially separated shotpoints may be stacked 
before migration, thereby enhancing signalLto- 
noise ratio. Second, we often may dispcnsc alto- 
gether with the line of surface receivers and mi- 
grate data recorded in the geometry-, where shot- 
point and receiver point move together across the 
earth’s surface as in the simplest type of marine 
profiling. 

By “downward continuation of moveout-cor- 
rected seismograms” we mean that beginning 
with moveout-corrected data observed at the 
surface, we will synthesize moveout-corrected 
seismograms corresponding to hypothetical re- 
ceivers at successively increasing depths. 

One reason for wanting the moveout-corrected 
data for buried receivers is that it is related, 
through geometry, to the upcoming wave which is 
needed to make a migrated profile. Another rea- 
son, which is really the same, relates to the nature 
of seismic diffraction. Figure 2 (after Hilterman, 
1970) illustrates that a data section can be ex- 
pected to resemble a cross-section through the re- 
flector if the radius of curvature of the reflector is 
much greater than the distance from the reflector 
to the receiver. Otherwise, one has a buried focus 
or diffraction. (Technically, a diffraction is a 
limiting case where some radius of curvature of a 
structure goes to zero.) In other words, moveout- 
corrected data gives a better representation of a 
structure if the receivers are near the structure, 
than if they are far away. In fact, when the re- 
ceivers are at the depth of the structure the buried 

focus problem disappears altogether. Diffractions 
from point scatterers also collapse to points when 
the receivers are at the same depth as the scatter. 
The method of migration proposed here is that as 
data are projected to successively greater depths, 
that part of the data corresponding to the re- 
ceiver depth is set aside as belonging to the m- 
grated data at that depth. Thus, various depths 
on the depth section are developed in succession 
as the moveout-corrected data arc projected 
downward. 

To be precise about the meaning of moveout- 
corrected data for buried receivers, \vc refer to 
Figure 3. Since the moveout-corrected profile M is 
created by a coordinate stretching of the upcom- 
ing n-a\-e I*, n-e have 

Observe the conceptual similarity of the relatioli- 
ship between L-(y, f, z) and M(s, d, z’) to the rcla- 
tionship between P(y, z, 1) and P’(J’, z’, t’). The 
fact that P and P’ are the same thing expressed in 
different coordinates is analogous to the fact that 
U and M are the same thing expressed in different 
coordinates. At the surface z = 0 we record the up- 
coming wave riy, t, O), and using a presumed 
velocity (\vhich need not be precisely correct), we 
transform axes to the NM0 profile M(.L., d, 0). The 
downn-ard (z) continuation of receivers 0i L:(y, t, 
z) with the wave equation will be equivalent to 
downward (2’) continuation of M(s, d, z’) with an 
equation we are about to derive. Although these 
t\vo different do\vnlvard continuations would be 
expected to give the same results, i.e., oiic could 
transform from c to M or M to I- at any depth, 
there are several reasons to prefer downward COW 
tinuation \vith V: 1) profiles from various shot- 
points may be summed before do\vnward COII- 

tinuation, 2) a coarser grid mesh may be used, and 
3) sections ma)- be down\vard continued. 

To obtain the differential equation for C, first 
we must define the coordinate transformation 
from (y, t, z) to (s, d, z’) and then use the chain 
rule to compute the required partial derivatives. 
From Figure 3 by means of elementary geometry, 
one may deduce the transformation 

y(.L., d, z’) = X’(2 - z’ld), (124 

t(x, cl, z’) = (2d - a’)(1 + .~~/d?)~/*,‘c, (12b) 

and D
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Downward Continuation of Seismograms 745 

To =I433 

FIG. 2. (After Hilterman, 1970) time sections recorded at various heights above a model. The top section (To 
=263) has shotl)oint below the curvature axis, center section at the curvature axis, anti bottom section above the 
curvature axis. 

2(x, cl, z’) = z’, (124 

and, by means of tedious algebra, the inverse 
transformation is found to be 

d (y, t, 2) = (2 + (c*P - y?)“2)/2, (134 

r(y, t, z) = (y/2)(1 + z/(c2f2 - y2)“2), (13b) 

and 

z’(y, 1, z) = 2. (134 

In constant velocity material one could find an 

equation for M which is valid for all offsets x. The 
algebra would be overwhelming, 50 we make the 
simplifying practical assumption that x/d<<l. 
The authors were surprised to discover that even 
if offset terms like x/d or y/t are completely 
neglected one still obtains a result which is a big 
improvement over equation (9) of the introduc- 
tory section. The reason is that even as offset goes 
to zero, the ratio of x to y remains important. Al- 
though (12) and (13) require a somewhat careful 
and detailed deduction, the zero offset relations 
are much easier and will be shown in detail. By 
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746 Claerbout and Doherty 

S 

’ y (x,d) 

FIG. 3. Moveout-correction geometry for buried 
receivers. There is a surface shot S and buried receiver 
K. The wave is assumed to reflect at the point P. The 
receiver K at (y, z’) measures the upcoming wave 
U(y, t, c). From the upcoming wave a moveout- 
corrected profile M(x, d, 3’) is constructed by axis 
stretching according to the geometry of the raypath 
SPK. 

similar right triangles, the ratio of x to d is the 

same as the ratio k--y to z’. Thus r/d= (2x-Y) 

1’2’ or 

y(x, a, 2’) = x(2 - z’/d). (14a) 

The traveltime along SP will be d/c and along 

PR it will be (d--z’)/c. Thus, 

t(x, d, z’) = (2d - z’)/c. (14b) 

The zero offset limit of (12) is (14j. Now for the 

inverse relations solve (14b) for d and use 

Z’(Y, t, 2) =z, 

d(y, t, 2;) = (5f + $12. ( 15 a) 

Solve (14a) for x eliminating d with (Isa) and 

using z’ = z, 

x = y/(2 - z/d) 

and 

x(Y, 1, z) = y,‘[2 - 2z/(ct + z)]. (15b) 

From the coordinate transiormation (1-S) and its 

inverse (1.5), it will be an easy matter now to 

compute the partial derivatives required for the 

transformation of the upgoing-wave equation. 

One derivative of particular interest, sy. is com- 

puted from (lib) to be 

.?, = 1:/(1 - 2z:((_1 + z)), 

\vhich in terms of the other variables is 

3zV = l/(2 - z “tl) = tl’(2tl - z’). (16) 

Computing all the partial derivatives at the zero 

offset limit and arranging into a matrix, we have s, Xt x, 
[ 1 d, dt d, I z I, Z’t z’, (17) 

=[ 
d/(2d - z’) 0 0 

0 c/2 l/2 . 

0 0 1 I 

Now there are two possible ways to proceed. The 

simplest way is to use the chain rule and insert 

partial derivatives into the wave equation. 

Aknother way is to insert the partial derivatives 

into the upcoming-wave equation. Let us insert 

the partial derivatives into the ~vave equation (2). 

u,, + liz, - c(y, 5) -‘1’,t = 0. (1% 

We must be aware that (IX) also has downgoing 

solutions which we will later clitninate by drop- 

ping a second order z’ derivative. Recalling (11) 

that U(y, t, z) =M(s, d, z’), we compute the 

d 

A!_ 

FIG. 4. Geometry for calculation of (&r/ay)l= l/(+/k)+ 
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Downward Coniinuation of Seismograms 747 

necessary terms for insertion into (18). Before 
insertion we simplify with the zeros in (17) and 
with the high-frequency approximation (gradients 
of waves are taken to be much greater than 
gradients of the coordinate transformation coeff- 
cients). 

lJt = Mzxt + Mcjd, = M,jdt, (19) 

and 

(20j 

(21) 

(22) 

(23) 

(24) 

Inserting (20), (22), (24), and (25) into (18) we 
obtain for the downward projection of the move- 
out-corrected data 

M ..x; + M,f,j i- 2Mcwdz 

+ M&d: - G-‘d;) = 0, 
(26) 

which, utilizing (17) and the assumption that the 
true (wave-equation) velocity equals the constant 
stacking velocity (in dt), simplifies to 

Md z, = - (27) 

The last term arises mainly because the wave 
equation we started from also has downgoing 
waves. The omission of this kind of term is dis- 
cussed in the first section and in earlier papers. 
There is a formal similarity between (9) and (27), 
so the same computer algorithm may be used. 

VARIABLE VELOCITY 

The result of the last section, equation (27), is 
restricted to material of constant velocity. It will 
be useful in practice to generalize the result to 
space-variable velocity. First note that tlze 
velocity C in the wave equation (IS) lzeed not be the 

same as the velocity, say F, in the moveout-correction 

rquations (11) to (17). It can be shown that the 
wave equation is still valid at high frequencies 
(w/c>>] Vcl /c) when th e velocity E is space vari- 
able, although the moveout-correction equations 

must be modified if the velocity f is to be space 
variable. Thus, (26) is a valid equation for down- 
ward continuation in variable-velocity material 
for data stacked at a constant velocity c‘. The 
principal change to (27) resulting from space- 
variable velocity is that the Mdd term does not 
drop out. The difficulty which arises if z#Z is not 
in the differential equation (26) but in the fact 
that there may bc destructive interference when 
stacking with the wrong velocity. Therefore we 
will recompute the partial-derivative matrix (17) 
for arbitrary depth dependence of stacking 
(moveout-correction) velocity. This will require 
some care. The matrix of (17) is really the Ja- 
cobian matrix of the transformation from (y, t, z) 
variables to (x, d, z’) variables, that is: 

[51 = [; K’ :]E]. (28) 

The inverse transformation may be defined as 

E] = E ; 41[51. (29) 

The statement that (29) is indeed inverse to (28) is 

(30) 

Near the zero offset limit z and y tend to zero and 
are, therefore, independent of 1, d, and z, so that 
n-~=.IZ=yd=yZ~= 0. Also, a small change in x or y 
has a second-order effect on traveltime so tz=dV 

=O. Thus, at small enough offsets (30) reduces to 
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748 Claerbout and Doherty 

The interesting parts of (31) arc Thus, using (32), 

XL! = l/Y,, (32) X” = Cd/(2Cd - &). (41) 

d&d = 1, (33) In the constant velocity limit (41) obviously 

and 
reduces to (16). 

The partial derivatives of traveltime t with 
d&,* + d, = 0. (34) respect to receiver depth and with respect to re- 

cording position are found in a similar manner. 
‘I’0 compute the partial derivative .rti, refer to The traveltime & through a layer of thickness dz 
Figure 4 which, for clarity, exaggerates the offset. is given by 
Fur rays which arc csscntially vertical 

tlz = cdl. 

We have Snell’s law, 

(sin 4)/c = const = p. 

Tracing rays in time gives 

12 22 x= S c sin $dt = p S cvt, 
0 0 

ultl using (35), 

.\‘ = /r J;:L 

and 

y = p S l'c?dt, 0 
which, from Figure 4, may be written as 

tll = tlz/c(t;) cos f#l, 

(35j 
where I$ is the angle from the ray to the vertical. 
Replacing l/cos 4 by 1 $-sin2 $~/2, we have 

(36) 1 
tit = 

( 
+ 

sin? + 
-. 
CC-“) 

-- --) dz. 
2&J> 

Using (361 and (37) to second order in x’, we get 

(37) 
Referring to Figure I we nolc that the traveitimc 
is twice the time from 0 to d, less the time from 0 
to z’. Thus; 

d 1 
t=2 S[ zzj + ;;g 112 

u 1 

(38) 
This equation may be used to find the partial 

derivatives of traveltime to first-order accuracy 
in x. However, in this section we arc interested in 

It is convenient to USC d and z’ as superscripts to 
indicate integration in the same way we use them 
as subscripts to denote differentiation. Thus, we 
tlctine 

,:,' _ S 
4 L(i)dZ, c' -. _ fC(Z)k, 0 S' " 

and use (37) lo eliminate /) iron1 (38) ; 

y = X(26” - &)/cd. (39) 

Differentiating with respect to z holding d and z’ 
constant, gives 

finding the derivatives to zero order in x, so the 
terms proportional to x2 may be omitted, giving 

" 1 
s S 

2' 1 
t=2 t/s - 

” c(z) 
ds, 

I, &j 

which wt abbreviate as 

t = 2(c I)” - ((-ml);‘. (42) 

Differentiating (42) with respect to d holding N 
and z’ fixed, gives 

C$ = + 2/C(d), (43) 

where c(d) is velocity c(z) evaluated at z=d. D
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S1 rccorclinq 

geometry 

NMO, t.v. velocity 
& migration (use 

Sl/d ax in eqn 49) 

h 

NM0 , t.v. velocity 

& miqration (use 
sZ/d a, in eqn 49) 

section for 
both offsets 

FIG. 5. Procedure for migrating data with several offsets. l:ield data are recorded usirlg Iwo receiver offsets, S, and 
SZ. The field data are separated into two sets: data recorded with offset S, and data recorded with offset S2. Moveout 
corrections are done for both sets of data. Then the S, data are migrated with ecluation (49) with (S,/d)& substituted 
for (n/d)&, giving the 5’1 depth section,M(x,d). Next the SZ data are migrated with ectuation (49) with (SJd)& sub- 
stituted for (x/d)&, giving the S:! depth section, M(s, d). I’inally, the Sr depth section and .Ye tlrpth section are 
stacked to give the composite depth section. 

to horizontal 

1’1~. 6. The (0, k) plane. h’ield data may be expected to have some energy everywhcrc in the (w, k) plane. Only in 
the speckled regton will our difference equations properly simulate the wave equation. Energy with 1 k I> 1 W/C 1 does 
not represent free waves; it represents either surface waves or errors in data collection (often ststics, random noise, 
or gain not smoothly variable from trace to trace). Such energy can mean nothing in a migration In-ogram, hence it 
should be rejected by filtering. This may be done by fan-filtering (as in Treitel et aI> 1967) or as was done here by 
means of numerical viscosity (Claerbout, 1970). Actually, for practical reasons one frequently may wish to reject 
rays outside a certain dip angle. This gives the larger fan-filter reject region 1 k I> /w/c sin (dip) ( In fact our present 
implementation is inadequate for dips greater than about 45 degrees (Claerbout, 197 1). Although information can 
be carried up to the folding frequency in both w and k, in practice the use of operators of finite length narrows the 
useful bandwidth. As shown in Claerbout and Johnson (1972) the use of simple dillerence operators results in a 
practical bandwidth restriction to about a quarter of the folding frequency. This presents no problem in principle; 
data may be interpolated before processing, or more elaborate (i.e., longer) difference operators may be used. Fi- 
nally, the figure was drawn with Ax>cAt because it represents the usual case in practice where extra points in time
are more cheaply obtained than extra points in space. 

D
ow

nl
oa

de
d 

01
/1

8/
16

 to
 2

3.
30

.6
5.

12
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



FIG. 7. The depth response to time-domain impulses and reconstruction of the impulses. The fact that the left frame is mostly blank de- 
picts a situation in which no echo is received when a source and receiver move together in the horizontal direction until they reach the right- 
hand edge of the frame where the three blips indicate that there are three echoes at successively increasing times. With this as observed data, 
the logical conclusion is that the reflection structure of the earth is three concentric circles with centers on the right margin. The central 
frame shows the circles. (For economy the right edge of the frame is a plane of symmetry.) It will be noticed that the bottom of the circles 
is darker than the top. This is indica6vc of the 45degree phase shift of bringing two-dimensional waves from a focus away from the focus. 
FVaves with dips greater than about 4.5 degrees have been filtered away by numerical viscosity. The loss of this energy plus the loss of the 
energy of waves which propagate at complex angles results in a reconstruction (right-hand frame) in which the impulses are somewhat 
spread OUL in the horizontal direction. 
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FIG. 8. The time response to depth-domain impulses and reconstruction of the impulses. The left frame depicts a model of the ca.rth which 
consists of three point scatterers beneath one another along the right-hand edge. The second frame is the synthetic time data created frog the 
model. Basically one ohserves the hyperbolic traveltime curves to the reflecting points. The third frame represents migration of the synthetic 
data hack to t.he point scatterers. As in Figure 6 there is a reduced resolution because, in principle, horizontal resolution cannot be better [ban 
vertical resolution (which is controlled by the frequency content of the waves) and in practice we have included only rays up to angles of about 
10 degrees. 
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FIG. 9. Response to time-domain impulses in a velocity gradient. The gradient of inverse velocity is constant such that the velocity ranges 
over a factor of 4 from top to bottom of the frames. The first frame appears like the uniformly spaced (say 1, 2, 3) pulses of Figure 7. However, 
here the vertical coordinate is not time t but 

Thus the pulses are really spaced at times proportional to (.9, 1.6, and 2.0). The second frame represents the depth section. The circles of Fig- 
ure 7 have changed to a narrower shape. If the rays were not cut off around 45 degrees, the shapes would resemble roughly that of a light hulh 
as indicated by the dashes. The third frame shows the reconstruction of the time data. It clearly deteriorates with depth. This is probably a 
result of the fact that a M-degree beam halfwidth at the bottom ref-lector collapses to a lo-degree beam halfwidth at the surface because of ray 
curvature. There is also some erroneous hias in the reconstruction (the pulses “bend” a little). This is probably a result of inadequate dip tilter- 
ing. At the time of writing we are uncertain how much the resolution loss in a velocity gradient results from our method and how much is 
fundamental. 
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Differentiating (42j with respect to z’ holding x 
and d fixed, gives 

fL, = - 1 J’.(z’). (44) 

Sol\- n-e can proceed to find dL and dz. Substituting 
(43) into (33) n-e find 

Substituting (45) and (4.3) into i,i4) gives 

c ((1) 
(1, = ~~~~ . 

2c(z’) 
(46) 

Finally, we”may substi tutu the partial derivatives 
from (Ih), (45), and (41) into the do\l-nwartl- 
continuation equation (26). Substituting (41), 
(45), and (46) into (26) and omitting MZfZ,, we get 

If \ve assume that the velocity. of \vaves in the 
earth depends onI>. on clcptli, then \ve may take 
c(z’) =c(s, tl, z’) and (47) reduces to 

This equation has the same mathematical form 
as (Y) and the same computer algorithm ma!. bc 
used again. 

Equation (48) is limited to raJ.s of moderate 
angle from the z axis. This equation was used ior 
Figures 11, 13, 14, 18, 10, 20, and 21. In the re- 
maining figures where steeper ray angles were of 
interest, the MZ,, term \vas included by the method 
0i Claerbout (lY71a). 

SHOT-GEOPHONE OFFSET 

If first-order terms in the offset parameter s, d 
had been retained in the deduction of (27), we 
would have instead 

The ne\v term in 149) becomes important ii the 
inequalit! 

is not sulliciently strong. 
The parameter s d is a measure of shot-geo- 

phone offset. The expression MZ Map is the tan- 
gent of the local angle of dip. Thus, the new term 
in (49) is not really necessary ii the offset, or the 
dip, or the product oi offset with dip ih sulfi- 
ciently small. Thus, we ma!. expect that the 
simpler equation without the offset term will be 
valid for migrating data over a fairly large range 
of offsets if the dip is not too large. Sow consider 
the occurrence oi the symbol .V in the coefficient 
r,:d and as an argument of _U(.V, d, 2’). On the 
basis of our derivation, these t\vo X’S are the same 
X. However, since s d can usually be neglected 
(i.e., reset to an arbitrary small value), we ma) 
regard the s in .r, d as independent of the x in 
M(.v, d, z’). In U(.u, tl, z’) the argument .r refers to 
the horizontal coordinate (depth point) on the 
depth profile. In .x’d the s reiers to the offset of 
the shot from the depth point. \Ve have sho\vn 
that this offset is not very important. This is a 
mathematical justification ior stacking moveout- 
corrected data from man\- shotpoints before mi- 
gration in cases where the product of refractor dip 
and offset is small. Problems may be expected to 
arise \rhen the dip or offset is great enough. This 
may correspond to Levin’s statement (1971), 
based 011 ray geometry, that stacking velocity
depends on dip. .i procedure (refer to Figure 5) 
{vi11 be described \vhich is intended for use \yith 
data \vhich has several offsets or dips (hence 
several stacking velocities) present in the same 
region 0i 3’ and 1. 

First, m(jveout-corrected time sections SO, S1, 
SX, can be constructed such that SO is made 
up oi all data oi zero and small offset 5’1 is data 
\\ith a some\vhat larger offset, etc. Then the 
different S, ma)- be separateI>, migrated through 
the use of (4Y) or its generalization to depth- 
variable velocit).. Since the earth itself is invari- 
cnt to changes in shot-receiver offset, the mi- 
grated S, should also be invariant to offset. Thus, 
regardless of dip, the migrated Sj should stack 
without destructive interference. In fact, the 
velocity which should be used in construction of 
the Sj is that for which the migrated Sj stack best. 
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DEPTH time DEPTH 
FIG. 12. Like Figure 11 except that the beds have dip. Xote that the h>-perbolas stay in place but in the time data the interfaces slide down 

(They migrate.) The hyperbolas in the time data would become far more dominant if data were recorded with automatic gain control. 
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